4 resultados para Microscopy, Confocal

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the early stages in the adsorption process of C60 molecules on a highly oriented pyrolitic graphite (HOPG) substrate. C60 powder was thermally evaporated in UHV of 10−8 Pa conditions onto a freshly cleaved HOPG surface. We did not observe individual fullerenes on the substrate for the case of short deposition times and low evaporation rates. However, small islands of C60 molecules with an fcc structure could be observed when the deposition rate was about 0.2 nm/min and the total thickness was above 1 nm. The islands did not grow in the vicinity of the HOPG steps. The typical lateral dimensions of these islands were of the order of a few hundred square nanometers, having thickness of up to five monolayers. We modified the shapes and positions of these islands by the STM tip, using a small (less than 1 V) bias voltage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Probe-based scanning microscopes, such as the STM and the AFM, are used to obtain the topographical and electronic structure maps of material surfaces, and to modify their morphologies on nanoscopic scales. They have generated new areas of research in condensed matter physics and materials science. We will review some examples from the fields of experimental nano-mechanics, nano-electronics and nano-magnetism. These now form the basis of the emerging field of Nano-technology. A parallel development has been brought about in the field of Computational Nano-science, using quantum-mechanical techniques and computer-based numerical modelling, such as the Molecular Dynamics (MD) simulation method. We will report on the simulation of nucleation and growth of nano-phase films on supporting substrates. Furthermore, a theoretical modelling of the formation of STM images of metallic clusters on metallic substrates will also be discussed within the non-equilibrium Keldysh Green function method to study the effects of coherent tunnelling through different atomic orbitals in a tip-sample geometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Freeze-dried (lyophilised) wafers and solvent cast films from sodium alginate (ALG) and sodium carboxymethylcellulose (CMC) have been developed as potential drug delivery systems for mucosal surfaces including wounds. The wafers (ALG, CMC) and films (CMC) were prepared by freeze-drying and drying in air (solvent evaporation) respectively, aqueous gels of the polymers containing paracetamol as a model drug. Microscopic architecture was examined using scanning electron microscopy, hydration characteristics with confocal laser scanning microscopy and dynamic vapour sorption. Texture analysis was employed to investigate mechanical characteristics of the wafers during compression. Differential scanning calorimetry was used to investigate polymorphic changes of paracetamol occurring during formulation of the wafers and films. The porous freeze-dried wafers exhibited higher drug loading and water absorption capacity than the corresponding solvent evaporated films. Moisture absorption, ease of hydration and mechanical behaviour were affected by the polymer and drug concentration. Two polymorphs of paracetamol were observed in the wafers and films, due to partial conversion of the original monoclinic to the orthorhombic polymorph during the formulation process. The results showed the potential of employing the freeze-dried wafers and solvent evaporated films in diverse mucosal applications due to their ease of hydration and based on different physical mechanical properties exhibited by both type of formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macromolecular therapeutics and nano-sized drug delivery systems often require localisation to specific intracellular compartments. In particular, efficient endosomal escape, retrograde trafficking, or late endocytic/lysosomal activation are often prerequisites for pharmacological activity. The aim of this study was to define a fluorescence microscopy technique able to confirm the localisation of water-soluble polymeric carriers to late endocytic intracellular compartments. Three polymeric carriers of different molecular weight and character were studied: dextrin (Mw~50,000 g/mol), a N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer (Mw approximately 35,000 g/mol) and polyethylene glycol (PEG) (Mw 5000 g/mol). They were labelled with Oregon Green (OG) (0.3-3 wt.%; <3% free OG in respect of total). A panel of relevant target cells were used: THP-1, ARPE-19, and MCF-7 cells, and primary bovine chondrocytes (currently being used to evaluate novel polymer therapeutics) as well as NRK and Vero cells as reference controls. Specific intracellular compartments were marked using either endocytosed physiological standards, Marine Blue (MB) or Texas-red (TxR)-Wheat germ agglutinin (WGA), TxR-Bovine Serum Albumin (BSA), TxR-dextran, ricin holotoxin, C6-7-nitro-2,1,3-benzoxadiazol-4-yl (NBD)-labelled ceramide and TxR-shiga toxin B chain, or post-fixation immuno-staining for early endosomal antigen 1 (EEA1), lysosomal-associated membrane proteins (LAMP-1, Lgp-120 or CD63) or the Golgi marker GM130. Co-localisation with polymer-OG conjugates confirmed transfer to discreet, late endocytic (including lysosomal) compartments in all cells types. The technique described here is a particularly powerful tool as it circumvents fixation artefacts ensuring the retention of water-soluble polymers within the vesicles they occupy.