24 resultados para Melting point

em Greenwich Academic Literature Archive - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Removing zinc by distillation can leave the lead bullion virtually free of zinc and also produces pure zinc crystals. Batch distillation is considered in a hemispherical kettle with water-cooled lid, under high vacuum (50 Pa or less). Sufficient zinc concentration at the evaporating surface is achieved by means of a mechanical stirrer. The numerical model is based on the multiphysics simulation package PHYSICA. The fluid flow module of the code is used to simulate the action of the stirring impeller and to determine the temperature and concentration fields throughout the liquid volume including the evaporating surface. The rate of zinc evaporation and condensation is then modelled using Langmuir’s equations. Diffusion of the zinc vapour through the residual air in the vacuum gap is also taken into account. Computed results show that the mixing is sufficient and the rate-limiting step of the process is the surface evaporation driven by the difference of the equilibrium vapour pressure and the actual partial pressure of zinc vapour. However, at higher zinc concentrations, the heat transfer through the growing zinc crystal crust towards the cold steel lid may become the limiting factor because the crystallization front may reach the melting point. The computational model can be very useful in optimising the process within its safe limits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High current density induced damages such as electromigration in the on-chip interconnection /metallization of Al or Cu has been the subject of intense study over the last 40 years. Recently, because of the increasing trend of miniaturization of the electronic packaging that encloses the chip, electromigration as well as other high current density induced damages are becoming a growing concern for off-chip interconnection where low melting point solder joints are commonly used. Before long, a huge number of publications have been explored on the electromigration issue of solder joints. However, a wide spectrum of findings might confuse electronic companies/designers. Thus, a review of the high current induced damages in solder joints is timely right this moment. We have selected 6 major phenomena to review in this paper. They are (i) electromigration (mass transfer due electron bombardment), (ii) thermomigration (mass transfer due to thermal gradient), (iii) enhanced intermetallic compound growth, (iv) enhanced current crowding, (v) enhanced under bump metallisation dissolution and (vi) high Joule heating and (vii) solder melting. the damage mechanisms under high current stressing in the tiny solder joint, mentioned in the review article, are significant roadblocks to further miniaturization of electronics. Without through understanding of these failure mechanisms by experiments coupled with mathematical modeling work, further miniaturization in electronics will be jeopardized

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose. To study thermal stability of Aspirin and define thermal events that are associated with the thermal degradation of aspirin. Methods. Experiments were performed using a DSC 823e (Mettler Toledo, Swiss). Aspirin is prone to thermal degradation upon exposure to high temperatures. The melting point of aspirin is 140.1±0.4ºC (DSC). Aspirin has been examined by heating samples to 120ºC, 155ºC and 185ºC with subsequent cooling to -55ºC and a final heating to 155ºC. Although different heating and cooling ranges have been used, only results obtained at a rate of 10ºC/min will be presented. All runs where conducted in hermetically sealed pans. Results. Upon heating the sample to 120ºC no significant thermal event can be detected. After cooling the sample and reheating a glass transition can be observed at ~-8ºC, followed by the melting of aspirin at ~139ºC. By heating the sample to 155ºC melting of aspirin has been detected at ~139ºC. On cooling and subsequent heating a glass transition occurs at ~-32ºC, together with a broad crystallisation (onset at ~38ºC and peak maximum at ~57ºC) followed by a broad melting with an onset at 94ºC and peak maximum at ~112ºC. Finally, by heating the sample to 185ºC melting at ~ 139ºC was observed, and upon cooling and reheating a glass transition was detected at ~-26ºC and no further events could be recorded. Conclusions. This research demonstrates that the degradation steps of Aspirin depend on the thermal treatment. The main degradation products of different thermal treatments are currently unknown it is clear that acetic acid, which is one of the degradation products, acts as an antiplasticiser by lowering the glass transition temperature. In addition, due to the presence of the degradation products in liquid form (observed by hot stage microscopy), Aspirin is still present in the sample and recrystallises during the second heating step and melts at much lower temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different industrial induction melting processes involve free surface and melt-solid interface of the liquid metal subject to dynamic change during the technological operation. Simulation of the liquid metal dynamics requires to solve the non-linear, coupled hydrodynamic-electromagnetic-heat transfer problem accounting for the time development of the liquid metal free boundary with a suitable turbulent viscosity model. The present paper describes a numerical solution method applicable for various axisymmetric induction melting processes, such as, crucible with free top surface, levitation, semi-levitation, cold crucible and similar melting techniques. The presented results in the cases of semi-levitation and crucible with free top surface meltings demonstrate oscillating transient behaviour of the free metal surface indicating the presence of gravity-inertial-electromagnetic waves which are coupled to the internal fluid flow generated by both the rotational and potential parts of the electromagnetic force.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In semilevitation melting, a cylindrical metal ingot is melted by a coaxial a.c. induction coil. A watercooled solid base supports the ingot, while the top and side free surface is confined by the magnetic forces as the melting front progresses. The dynamic interplay between gravity, hydrodynamic stress, and the Lorentz force in the fluid determines the instantaneous free surface shape. The coupled nonstationary equations for turbulent flow, heat with phase change, and high-frequency electromagnetic field are solved numerically for the axisymmetric time-dependent domain by a continuous mesh transformation, using a pseudospectral method. Results are obtained for the two actually existing coil configurations and several validation cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electromagnetic processing of liquid metals involves dynamic change of the fluid volume interfacing with a melting solid material, gas or vacuum, and possibly a different liquid. Electromagnetic field and the associated force field are strongly coupled to the free surface dynamics and the heat-mass transfer. We present practical modelling examples of the flow and heat transfer using an accurate pseudo-spectral code and the k-omega turbulence model suitable for complex and transitional flows with free surfaces. The 'cold crucible' melting is modelled dynamically including the melting front gradual propagation and the magnetically confined free surrounding interface. Intermittent contact with the water-cooled segmented wall and the radiation heat losses are parts of the complex problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic fields are used in a number of processes related to the extraction of metals, production of alloys and the shaping of metal components. Computational techniques have an increasingly important role to play in the simulation of such processes, since it is often difficult or very costly to conduct experiments in the high temperature conditions encountered and the complex interaction of fluid flow, heat transfer and magnetic fields means simple analytic models are often far removed from reality. In this paper an overview of the computational activity at the University of Greenwich is given in this area, covering the past ten years. The overview is given from the point of view of the modeller and within the space limitations imposed by the format it covers the numerical methods used, attempts at validation against experiments or analytic procedures; it highlights successes, but also some failures. A broad range of models is covered in the review (and accompanying lecture), used to simulate (a) A-C field applications: induction melting, magnetic confinement and levitation, casting and (b) D-C field applications such as: arc welding and aluminium electroloysis. Most of these processes involve phase change of the metal (melting or solidification), the presence of a dynamic free surface and turbulent flow. These issues affect accuracy and need to be address by the modeller.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic process of melting different materials in a cold crucible is being studied experimentally with parallel numerical modelling work. The numerical simulation uses a variety of complementing models: finite volume, integral equation and pseudo-spectral methods combined to achieve the accurate description of the dynamic melting process. Results show the temperature history of the melting process with a comparison of the experimental and computed heat losses in the various parts of the equipment. The free surface visual observations are compared to the numerically predicted surface shapes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Induction Skull Melting (ISM) is a technique for heating, melting, mixing and, possibly, evaporating reactive liquid metals at high temperatures with a minimum contact at solid walls. The presented numerical modelling involves the complete time dependent process analysis based on the coupled electromagnetic, temperature and turbulent velocity fields during the melting and liquid shape changes. The simulation model is validated against measurements of liquid metal height, temperature and heat losses in a commercial size ISM furnace. The observed typical limiting temperature plateau for increasing input electrical power is explained by the turbulent convective heat losses. Various methods to increase the superheat within the liquid melt, the process energy efficiency and stability are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presented numerical modelling for the magnetic levitation involves coupling of the electromagnetic field, liquid shape change, fluid velocities and the temperature field at every time step during the simulation in time evolution. Combination of the AC and DC magnetic fields can be used to achieve high temperature, stable levitation conditions. The oscillation frequency spectra are analysed for droplets levitated in AC and DC magnetic fields at various combinations. An electrically poorly conducting, diamagnetic droplet (e.g. water) can be stably levitated using the dia- and para-magnetic properties of the sample material in a high intensity, gradient DC field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A casting route is often the most cost-effective means of producing engineering components. However, certain materials, particularly those based on Ti, TiAl and Zr alloy systems, are very reactive in the molten condition and must be melted in special furnaces. Induction Skull Melting (ISM) is the most widely-used process for melting these alloys prior to casting components such as turbine blades, engine valves, turbocharger rotors and medical prostheses. A major research project is underway with the specific target of developing robust techniques for casting TiAl components. The aims include increasing the superheat in the molten metal to allow thin section components to be cast, improving the quality of the cast components and increasing the energy efficiency of the process. As part of this, the University of Greenwich (UK) is developing a computer model of the ISM process in close collaboration with the University of Birmingham (UK) where extensive melting trials are being undertaken. This paper describes the experimental measurements to obtain data to feed into and to validate the model. These include measurements of the true RMS current applied to the induction coil, the heat transfer from the molten metal to the crucible cooling water, and the shape of the column of semi-levitated molten metal. Data are presented for Al, Ni and TiAl.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cold crucible, or induction skull melting process as is otherwise known, has the potential to produce high purity melts of a range of difficult to melt materials, including Ti–Al and Ti6Al4V alloys for Aerospace, Ti–Ta and other biocompatible materials for surgical implants, silicon for photovoltaic and electronic applications, etc. A water cooled AC coil surrounds the crucible causing induction currents to melt the alloy and partially suspend it against gravity away from water-cooled surfaces. Strong stirring takes place in the melt due to the induced electromagnetic Lorentz forces and very high temperatures are attainable under the right conditions (i.e., provided contact with water cooled walls is minimised). In a joint numerical and experimental research programme, various aspects of the design and operation of this process are investigated to increase our understanding of the physical mechanisms involved and to maximise process efficiency. A combination of FV and Spectral CFD techniques are used at Greenwich to tackle this problem numerically, with the experimental work taking place at Birmingham University. Results of this study, presented here, highlight the influence of turbulence and free surface behaviour on attained superheat and also discuss coil design variations and dual frequency options that may lead to winning crucible designs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solidification and melting processes involve a range of physical phenomena and their interactions (i.e., multiphysics). Computational modeling of such processes presents a significant challenge, both in representing the physics involved and in handling the resulting coupled behavior. Two methods for the computational modeling of multiphysics processes in complex geometries are highlighted in the context of four challenging applications

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Induction Skull Melting (ISM) is used for heating, melting, mixing and, possibly, evaporating reactive liquid metals at high temperatures when a minimum contact at solid walls is required. The numerical model presented here involves the complete time dependent process analysis based on the coupled electromagnetic, temperature and turbulent velocity fields during the melting and liquid shape changes. The simulation is validated against measurements of liquid metal height, temperature and heat losses in a commercial size ISM furnace. The often observed limiting temperature plateau for ever increasing electrical power input is explained by the turbulent convective heat losses. Various methods to increase the superheat within the liquid melt, the process energy efficiency and stability are proposed.