3 resultados para Mechanism of somatic embryogenesis

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solder is often used as an adhesive to attach optical fibers to a circuit board. In this proceeding we will discuss efforts to model the motion of an optical fiber during the wetting and solidification of the adhesive solder droplet. The extent of motion is determined by several competing forces, during three “stages” of solder joint formation. First, capillary forces of the liquid phase control the fiber position. Second, during solidification, the presence of the liquid-solid-vapor triple line as well as a reduced liquid solder volume leads to a change in the net capillary force on the optical fiber. Finally, the solidification front itself impinges on the fiber. Publicly-available finite element models are used to calculate the time-dependent position of the solidification front and shape of the free surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recovery of platinum group metals (PGMs) from catalytic converters of spent exhaust systems is considered in this paper. To be cost-effective, recovery processes must be well over 90% efficient and so the optimisation of their operation is vital. Effective optimisation requires a sound understanding of the operation and the underlying process mechanisms. This paper focuses on pyrometallurgical recovery operations used and typified by the Johnson–Matthey process. Analysis of this process reveals that it cannot be simply explained by the gravity model that is normally assumed. The analysis reveals that the affinity of PGM particles for the melted collector metal is a key factor in the behaviour of the process. A rational explanation of the key issues that govern the process behaviour is proposed and shown to be consistent with available operational data. The results generated would be applicable to other similar processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A coated matrix tablet formulation has been used to develop controlled release diltiazem HCl (DIL) tablets. The developed drug delivery system provided prolonged drug release rates over a defined period of time. DIL tablets prepared using dry mixing and direct compression and the core consisted of hydrophilic and hydrophobic polymers such as hydroxypropylmethylcellulose (HPMC), Eudragits RLPO/RSPO, microcrystalline cellulose, and lactose. Tablets were coated with Eudragit NE 30D, and the influence of varying the inert hydrophobic polymers and the amount of the coating polymer were investigated. The release profile of the developed formulation was described by the Higuchi model. Stability trials up to 6 months displayed excellent reproducibility.