2 resultados para Mechanical alloy

em Greenwich Academic Literature Archive - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Removing zinc by distillation can leave the lead bullion virtually free of zinc and also produces pure zinc crystals. Batch distillation is considered in a hemispherical kettle with water-cooled lid, under high vacuum (50 Pa or less). Sufficient zinc concentration at the evaporating surface is achieved by means of a mechanical stirrer. The numerical model is based on the multiphysics simulation package PHYSICA. The fluid flow module of the code is used to simulate the action of the stirring impeller and to determine the temperature and concentration fields throughout the liquid volume including the evaporating surface. The rate of zinc evaporation and condensation is then modelled using Langmuir’s equations. Diffusion of the zinc vapour through the residual air in the vacuum gap is also taken into account. Computed results show that the mixing is sufficient and the rate-limiting step of the process is the surface evaporation driven by the difference of the equilibrium vapour pressure and the actual partial pressure of zinc vapour. However, at higher zinc concentrations, the heat transfer through the growing zinc crystal crust towards the cold steel lid may become the limiting factor because the crystallization front may reach the melting point. The computational model can be very useful in optimising the process within its safe limits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copper (Cu) has been widely used in the under bump metallurgy of chip and substrate metallization for chip packaging. However, due to the rapid formation of Cu–Sn intermetallic compound (IMC) at the tin-based solder/Cu interface during solder reaction, the reliability of this type of solder joint is a serious concern. In this work, electroless nickel–phosphorous (Ni–P) layer was deposited on the Cu pad of the flexible substrate as a diffusion barrier between Cu and the solder materials. The deposition was carried out in a commercial acidic sodium hypophosphite bath at 85 °C for different pH values. It was found that for the same deposition time period, higher pH bath composition (mild acidic) yields thicker Ni–P layer with lower phosphorous content. Solder balls having composition 62%Sn–36%Pb–2%Ag were reflowed at 240 °C for 1 to 180 min on three types of electroless Ni–P layers deposited at the pH value of 4, 4.8 and 6, respectively. Thermal stability of the electroless Ni–P barrier layer against the Sn–36%Pb–2%Ag solder reflowed for different time periods was examined by scanning electron microscopy equipped with energy dispersed X-ray. Solder ball shear test was performed in order to find out the relationship between the mechanical strength of solder joints and the characteristics of the electroless Ni–P layer deposited. The layer deposited in the pH 4 acidic bath showed the weak barrier against reflow soldering whereas layer deposited in pH 6 acidic bath showed better barrier against reflow soldering. Mechanical strength of the joints were deteriorated quickly in the layer deposited at pH 4 acidic bath, which was found to be thin and has a high phosphorous content. From the cross-sectional studies and fracture surface analyses, it was found that the appearance of the dark crystalline phosphorous-rich Ni layer weakened the interface and hence lower solder ball shear strength. Ni–Sn IMC formed at the interfaces was found to be more stable at the low phosphorous content (∼14 at.%) layer. Electroless Ni–P deposited at mild acidic bath resulting phosphorous content of around 14 at.% is suggested as the best barrier layer for Sn–36%Pb–2%Ag solder.