5 resultados para Matrix effects

em Greenwich Academic Literature Archive - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the effects of the solder reflow process on the reliability of anisotropic conductive film (ACF) interconnections for flip chip on flex (FCOF) applications are investigated. Experiments as well as computer modeling methods have been used. In the experiments, it was found that the contact resistance of ACF joints increased after the subsequent reflow process, and the magnitude of this increase was strongly correlated to the peak temperature of the reflow profile. Nearly 40% of the joints were opened (i.e. lifted away from the pad) after the reflow process with 260 °C peak temperature while no opening was observed when the peak temperature was 210 °C. It is believed that the CTE mismatch between the polymer particle and the adhesive matrix is the main cause of this contact degradation. It was also found that the ACF joints after the reflow process with 210 °C peak temperature showed a high ability to resist water absorption under steady state 85 °C/85%RH conditions, probably because the curing degree of the ACF was improved during the reflow process. To give a good understanding, a 3D model of an ACF joint structure was built and finite element analysis was used to predict the stress distribution in the conductive particles, adhesive matrix and metal pads during the reflow process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anisotropic conductive film (ACF) which consists of an adhesive epoxy matrix and randomly distributed conductive particles are widely used as the connection material for electronic devices with high I/O counts. However, for the semiconductor industry the reliability of the ACF is still a major concern due to a lack of experimental reliability data. This paper reports the investigations into the moisture-induced failures in Flip-Chip-on-Flex interconnections with Anisotropic Conductive Films (ACFs). Both experimental and modeling methods were applied. In the experiments, the contact resistance was used as a quality indicator and was measured continuously during the accelerated tests (autoclave tests). The temperature, relative humidity and the pressure were set at 121°C, 100%RH, and 2atm respectively. The contact resistance of the ACF joints increased during the tests and nearly 25% of the joints were found to be open after 168 hours’ testing time. Visible conduction gaps between the adhesive and substrate pads were observed. Cracks at the adhesive/flex interface were also found. For a better understanding of the experimental results, 3-D Finite Element (FE) models were built and a macro-micro modeling method was used to determine the moisture diffusion and moisture-induced stresses inside the ACF joints. Modeling results are consistent with the findings in the experimental work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anisotropic conductive film (ACF) which consists of an adhesive epoxy matrix and randomly distributed conductive particles are widely used as the connection material for electronic devices with high I/O counts. However, for the semiconductor industry the reliability of the ACF is still a major concern due to a lack of experimental reliability data. This paper reports an investigation into the moisture effects on the reliability of ACF interconnections in the flip-chip-on-flex (FCOF) applications. A macro-micro 3D finite element modeling technique was used in order to make the multi-length-scale modeling of the ACF flip chip possible. The purposes of this modeling work was to understand the role that moisture plays in the failure of ACF flip chips, and to look into the influence of physical properties and geometric characteristics, such as the coefficient of the moisture expansion (CME), Young's modulus of the adhesive matrix and the bump height on the reliability of the ACF interconnections in a humid environment. Simulation results suggest that moisture-induced swelling of the adhesive matrix is the major cause of the ACF joint opening. Modeling results are consistent with the findings in the experimental work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the work of an investigation of the effects of solder reflow process on the reliability of anisotropic conductive film (ACF) interconnection for flip-chip on flex (FCOF) applications. Experiments as well as computer modeling methods have been used. The results show that the contact resistance of ACF interconnections increases after the reflow and the magnitude of the increase is strongly correlated to the peak reflow temperature. In fact, nearly 40 percent of the joints are open when the peak reflow temperature is 260°C, while there is no opening when the peak temperature is 210°C. It is believed that the coefficient of thermal expansion (CTE) mismatch between the polymer particle and the adhesive matrix is the main cause of this contact degradation. To understand this phenomenon better, a three-dimensional (3-D) finite element (FE) model of an ACF joint has been analyzed in order to predict the stress distribution in the conductive particles, adhesive matrix and metal pads during the reflow process. The stress level at the interface between the particle and its surrounding materials is significant and it is the highest at the interface between the particle and the adhesive matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of aluminum in glass-ionomers and resin-modified glass-ionomers for dentistry is reviewed. Aluminum is included in the glass component of these materials in the form of Al(2)O(3) to confer basicity on the glass and enable the glass to take part in the acid-base setting reactions. Results of studies of these reactions by FTIR and magic-angle spinning (MAS)-NMR spectroscopy are reported and the role of aluminum is discussed in detail. Aluminum has been shown to be present in the glasses in predominantly 4-coordination, as well as 5- and 6-coordination, and during setting a proportion of this is converted to 6-coordinate species within the matrix of the cement. Despite this, mature cements may contain detectable amounts of both 4- and 5-coordinate aluminum. Aluminum has been found to be leached from glass-ionomer cements, with greater amounts being released under acidic conditions. It may be associated with fluoride, with which it is known to complex strongly. Aluminum that enters the body via the gastro-intestinal tract is mainly excreted, and only about 1% ingested aluminum crosses the gut wall. Calculation shows that, if a glass-ionomer filling dissolved completely over 5 years, it would add only an extra 0.5% of the recommended maximum intake of aluminum to an adult patient. This leads to the conclusion that the release of aluminum from either type of glass-ionomer cement in the mouth poses a negligible health hazard.