2 resultados para Matabolism of Nueleic Acids Activities of Hydroiytic Enzymes
em Greenwich Academic Literature Archive - UK
Resumo:
The secondary structure of the trimeric protein 4-chlorobenzoyl coenzyme A dehalogenase from Arthrobacter sp. strain TM-1, the second of three enzymes involved in the dechlorination of 4-chlorobenzoate to form 4-hydroxybenzoate, has been examined. E(mM) for the enzyme was 12.59. Analysis by circular dichroism spectrometry in the far uv indicated that 4-chlorobenzoyl coenzyme A dehalogenase was composed mostly of alpha-helix (56%) with lesser amounts of random coil (21%), beta-turn (13%) and beta-sheet (9%). These data are in close agreement with a computational prediction of secondary structure from the primary amino acid sequence, which indicated 55.8% alpha-helix, 33.7% random coil and 10.5% beta-sheet; the enzyme is, therefore, similar to the 4-chlorobenzoyl coenzyme A dehalogenase from Pseudomonas sp. CBS-3. The three-dimensional structure, including that of the presumed active site, predicted by computational analysis, is also closely similar to that of the Pseudomonas dehalogenase. Study of the stability and physicochemical properties revealed that at room temperature, the enzyme was stable for 24 h but was completely inactivated by heating to 60 degrees C for 5 min; thereafter by cooling at 1 degrees C min(-1) to 45 degrees C, 20.6% of the activity could be recovered. Mildly acidic (pH 5.2) or alkaline (pH 10.1) conditions caused complete inactivation, but activity was fully recovered on returning the enzyme to pH 7.4. Circular dichroism studies also indicated that secondary structure was little altered by heating to 60 degrees C, or by changing the pH from 7.4 to 6.0 or 9.2. Complete, irreversible destruction of, and maximal decrease in the fluorescence yield of the protein at 330-350 nm were brought about by 4.5 M urea or 1.1 M guanidinium chloride. Evidence was obtained to support the hypothetical three-dimensional model, that residues W140 and W167 are buried in a non-polar environment, whereas W182 appears at or close to the surface of the protein. At least one of the enzymes of the dehalogenase system (the combined 4-chlorobenzoate:CoA ligase, the dehalogenase and 4-hydroxybenzoyl coenzyme A thioesterase) appears to be capable of association with the cell membrane.
Resumo:
Background: With the spread of pyrethroid resistance in mosquitoes, the combination of an insecticide (carbamate or organophosphate) with a repellent (DEET) is considered as a promising alternative strategy for the treatment of mosquito nets and other relevant materials. The efficacy of these mixtures comes from the fact that they reproduce pyrethroid features and that positive interactions occur between insecticides and repellent. To better understand the mechanisms involved and assess the impact of detoxifying enzymes (oxidases and esterases) in these interactions, bioassays were carried out in the laboratory against the main dengue vector Aedes aegypti. Methods: Topical applications of DEET and propoxur (carbamate), used alone or as a mixture, were carried out on female mosquitoes, using inhibitors of the two main detoxification pathways in the insect. PBO, an inhibitor of multi-function oxidases, and DEF, an inhibitor of esterases, were applied one hour prior to the main treatment. Results: Results showed that synergism between DEET and propoxur disappeared in the presence of PBO but not with DEF. This suggests that oxidases, contrary to esterases, play a key role in the interactions occurring between DEET and cholinesterase inhibitors in mosquitoes. Conclusion: These findings are of great interest for the implementation of "combination nets" in the field. They support the need to combine insecticide with repellent to overcome insecticide resistance in mosquitoes of public health importance.