2 resultados para Mass Flow
em Greenwich Academic Literature Archive - UK
Resumo:
Various models for predicting discharge rates have been developed over the last four decades by many research workers (notably Beverloo [1], Johanson [2], Brown [3], Carleton [4], Crewdson [5], Nedderman [6], Gu [7].). In many cases these models offer comparable approaches to the prediction of discharge rates of bulk particulates from storage equipment when solely gravity is acting to initiate flow (since they invariably consider the use of mass-flow design equipment). The models that have been developed consider a wide range of bulk particulates (coarse, incompressible, fine, cohesive) and most contemporary works have incorporated validation against test programmes. Research currently underway at The Wolfson Centre for Bulk Solids Handling Technology, University of Greenwich, has considered the relative performance of these models with respect to a range of bulk properties and with particular focus upon the flexibility of the models to cater for different geometrical factors for vessels.
Resumo:
Gas-solids two phase systems are widely employed within process plant in the form of pneumatic conveyors, dust extraction systems and solid fuel injection systems. The measurement of solids phase velocity therefore has wide potential application in flow monitoring and, in conjunction with density measurement instrumentation, solids mass flow rate measurement. Historically, a number of authors have detailed possible measurement techniques, and some have published limited test results. It is, however, apparent that none of these technologies have found wide application in industry. Solids phase velocity measurements were undertaken using real time cross correlation of signals from two electrostatic sensors spaced axially along a pipeline conveying pulverised coal (PF). Details of the measurement equipment, the pilot scale test rig and the test results are presented.