12 resultados para Markov Regime Switching
em Greenwich Academic Literature Archive - UK
Resumo:
The key problems in discussing stochastic monotonicity and duality for continuous time Markov chains are to give the criteria for existence and uniqueness and to construct the associated monotone processes in terms of their infinitesimal q -matrices. In their recent paper, Chen and Zhang [6] discussed these problems under the condition that the given q-matrix Q is conservative. The aim of this paper is to generalize their results to a more general case, i.e., the given q-matrix Q is not necessarily conservative. New problems arise 'in removing the conservative assumption. The existence and uniqueness criteria for this general case are given in this paper. Another important problem, the construction of all stochastically monotone Q-processes, is also considered.
Resumo:
Attention has recently focussed on stochastic population processes that can undergo total annihilation followed by immigration into state j at rate αj. The investigation of such models, called Markov branching processes with instantaneous immigration (MBPII), involves the study of existence and recurrence properties. However, results developed to date are generally opaque, and so the primary motivation of this paper is to construct conditions that are far easier to apply in practice. These turn out to be identical to the conditions for positive recurrence, which are very easy to check. We obtain, as a consequence, the surprising result that any MBPII that exists is ergodic, and so must possess an equilibrium distribution. These results are then extended to more general MBPII, and we show how to construct the associated equilibrium distributions.
Resumo:
This paper surveys the recent progresses made in the field of unstable denumerable Markov processes. Emphases are laid upon methodology and applications. The important tools of Feller transition functions and Resolvent Decomposition Theorems are highlighted. Their applications particularly in unstable denumerable Markov processes with a single instantaneous state and Markov branching processes are illustrated.
Resumo:
The problems encountered when using traditional rectangular pulse hierarchical point processmodels for fine temporal resolution and the growing number of available tip-time records suggest that rainfall increments from tipping-bucket gauges be modelled directly. Poisson processes are used with an arrival rate modulated by a Markov chain in Continuous time. The paper shows how, by using two or three states for this chain, much of the structure of the rainfall intensity distribution and the wet/dry sequences can be represented for time-scales as small as 5 minutes.
Resumo:
A generalized Markov Brnching Process (GMBP) is a Markov branching model where the infinitesimal branching rates are modified with an interaction index. It is proved that there always exists only one GMBP. An associated differential-integral equation is derived. The extinction probalility and the mean and conditional mean extinction times are obtained. Ergodicity and stability of GMBP with resurrection are also considered. Easy checking criteria are established for ordinary and strong ergodicty. The equilibrium distribution is given in an elegant closed form. The probability meaning of our results is clear and thus explained.
Resumo:
This paper focuses on the basic problems regarding uniqueness and extinction properties for generalised Markov branching processes. The uniqueness criterion is firstly established and a differential–integral equation satisfied by the transition functions of such processes is derived. The extinction probability is then obtained. A closed form is presented for both the mean extinction time and the conditional mean extinction time. It turns out that these important quantities are closely related to the elementary gamma function.
Resumo:
This paper concentrates on investigating ergodicity and stability for generalised Markov branching processes with resurrection. Easy checking criteria including several clear-cut corollaries are established for ordinary and strong ergodicity of such processes. The equilibrium distribution is given in an elegant closed form for the ergodic case. The probabilistic interpretation of the results is clear and thus explained.
Resumo:
We derive necessary and sufficient conditions for the existence of bounded or summable solutions to systems of linear equations associated with Markov chains. This substantially extends a famous result of G. E. H. Reuter, which provides a convenient means of checking various uniqueness criteria for birth-death processes. Our result allows chains with much more general transition structures to be accommodated. One application is to give a new proof of an important result of M. F. Chen concerning upwardly skip-free processes. We then use our generalization of Reuter's lemma to prove new results for downwardly skip-free chains, such as the Markov branching process and several of its many generalizations. This permits us to establish uniqueness criteria for several models, including the general birth, death, and catastrophe process, extended branching processes, and asymptotic birth-death processes, the latter being neither upwardly skip-free nor downwardly skip-free.
Resumo:
We extend the Harris regularity condition for ordinary Markov branching process to a more general case of non-linear Markov branching process. A regularity criterion which is very easy to check is obtained. In particular, we prove that a super-linear Markov branching process is regular if and only if the per capita offspring mean is less than or equal to I while a sub-linear Markov branching process is regular if the per capita offspring mean is finite. The Harris regularity condition then becomes a special case of our criterion.
Resumo:
This note provides a new probabilistic approach in discussing the weighted Markov branching process (WMBP) which is a natural generalisation of the ordinary Markov branching process. Using this approach, some important characteristics regarding the hitting times of such processes can be easily obtained. In particular, the closed forms for the mean extinction time and conditional mean extinction time are presented. The explosion behaviour of the process is investigated and the mean explosion time is derived. The mean global holding time and the mean total survival time are also obtained. The close link between these newly developed processes and the well-known compound Poisson processes is investigated. It is revealed that any weighted Markov branching process (WMBP) is a random time change of a compound Poisson process.
Resumo:
We study information rates of time-varying flat-fading channels (FFC) modeled as finite-state Markov channels (FSMC). FSMCs have two main applications for FFCs: modeling channel error bursts and decoding at the receiver. Our main finding in the first application is that receiver observation noise can more adversely affect higher-order FSMCs than lower-order FSMCs, resulting in lower capacities. This is despite the fact that the underlying higher-order FFC and its corresponding FSMC are more predictable. Numerical analysis shows that at low to medium SNR conditions (SNR lsim 12 dB) and at medium to fast normalized fading rates (0.01 lsim fDT lsim 0.10), FSMC information rates are non-increasing functions of memory order. We conclude that BERs obtained by low-order FSMC modeling can provide optimistic results. To explain the capacity behavior, we present a methodology that enables analytical comparison of FSMC capacities with different memory orders. We establish sufficient conditions that predict higher/lower capacity of a reduced-order FSMC, compared to its original high-order FSMC counterpart. Finally, we investigate the achievable information rates in FSMC-based receivers for FFCs. We observe that high-order FSMC modeling at the receiver side results in a negligible information rate increase for normalized fading rates fDT lsim 0.01.