9 resultados para MOVEMENT SIMULATION

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditionally, when designing a ship the driving issues are seen to be powering, stability, strength and seakeeping. Issues related to ship operations and evolutions are investigated later in the design process, within the constraint of a fixed layout. This can result in operational inefficiencies and limitations, excessive crew numbers and potentially hazardous situations. University College London and the University of Greenwich are in the final year of a three year EPSRC funded research project to integrate the simulation of personnel movement into early stage ship design. This allows the assessment of onboard operations while the design is still amenable to change. The project brings together the University of Greenwich developed maritimeEXODUS personnel movement simulation software and the SURFCON implementation of the Design Building Block approach to early stage ship design, which originated with the UCL Ship Design Research team. Central to the success of this project is the definition of a suitable series of Naval Combatant Human Performance Metrics which can be used to assess the performance of the design in different operational scenarios. The paper outlines the progress made on deriving the human performance metric from human factors criteria measured in simulations and their incorporation into a Behavioural Matrix for analysis. It describes the production of a series of SURFCON ship designs based on the RN Type 22 Batch 3 frigate, and their analysis using the PARAMARINE and maritimeEXODUS software. Conclusions to date will be presented on the integration of personnel movement simulation into the preliminary ship design process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditionally, when designing a ship the driving issues are seen to be powering, stability, strength and seakeeping. Issues related to ship operations and evolutions are investigated later in the design process, within the constraint of a fixed layout. This can result in operational inefficiencies and limitations, excessive crew numbers and potentially hazardous situations. This paper summarises work by University College London and the University of Greenwich prior to the completion of a three year EPSRC funded research project to integrate the simulation of personnel movement into early stage ship design. This integration is intended to facilitate the assessment of onboard operations while the design is still highly amenable to change. The project brings together the University of Greenwich developed maritimeEXODUS personnel movement simulation software and the SURFCON implementation of the Design Building Block approach to early stage ship design, which originated with the UCL Ship Design Research team and has been implemented within the PARAMARINE ship design system produced by Graphics Research Corporation. Central to the success of this project is the definition of a suitable series of Performance Measures (PM) which can be used to assess the human performance of the design in different operational scenarios. The paper outlines the progress made on deriving the PM from human dynamics criteria measured in simulations and their incorporation into a Human Performance Metric (HPM) for analysis. It describes the production of a series of SURFCON ship designs, based on the Royal Navy’s Type 22 Batch 3 frigate, and their analysis using the PARAMARINE and maritimeEXODUS software. Conclusions on the work to date and for the remainder of the project are presented addressing the integration of personnel movement simulation into the preliminary ship design process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular dynamics has been employed to model the fracture of a twodimensional triangular atomic lattice. The N-body Sutton-Chen potential developed for fcc metals and its extended version (Rafii-Tabar and Sutton) for fcc random binary alloys were used for the interatomic interactions. It is shown that at low temperatures cleavage fractures can occur in both an elemental metal and an alloy. At elevated temperatures the nucleation of dislocations is shown to cause a brittle-to-ductile transition. For the brittle crack propagation in the elemental metal, crack propagation speeds have been computed for different stress rates, and a crack instability found to exist as the speed reaches a critical value of about 32% of the Rayleigh wave speed. For the random alloy, we find that the dislocation movement can be affected by the distorted lattice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present here a decoupling technique to tackle the entanglement of the nonlinear boundary condition and the movement of the char/virgin front for a thermal pyrolysis model for charring materials. Standard numerical techniques to solve moving front problems — often referred to as Stefan problems — encounter difficulties when dealing with nonlinear boundaries. While special integral methods have been developed to solve this problem, they suffer from several limitations which the technique described here overcomes. The newly developed technique is compared with the exact analytical solutions for some simple ideal situations which demonstrate that the numerical method is capable of producing accurate numerical solutions. The pyrolysis model is also used to simulate the mass loss process from a white pine sample exposed to a constant radiative flux in a nitrogen atmosphere. Comparison with experimental results demonstrates that the predictions of mass loss rates and temperature profile within the solid material are in good agreement with the experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular dynamics has been employed to model the fracture of a two dimensional triangular atomic lattice. The N-body Sutton-Chen potential developed for fcc metals and its extended version (Rafii-Tabar and Sutton) for fcc random binary alloys were used for the interatomic interactions. It is shown that at low temperatures cleavage fractures can occur in both an elemental metal and an alloy. At elevated temperatures the nucleation of dislocations is shown to cause a brittle-to-ductile transition. For the brittle crack propagation in the elemental metal, crack propagation speeds have been computed for different stress rates, and a crack instability found to exist as the speed reaches a critical value of about 32% of the Rayleigh wave speed. For the random alloy, we find that the dislocation movement can be affected by the distorted lattice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes work carried out in the FIRE EXIT research project. FIRE EXIT aims to develop an Evacuation Simulator, capable of addressing issues of mustering, ship motions, fire and abandonment. In achieving these aims, FIRE EXIT took as its starting point the state-of-the-art in ship evacuation simulation (the maritimeEXODUS software), fire simulation (the SMARTFIRE software) and large-scale experimental facilities (the SHEBA facility). It then significantly enhanced these capabilities. A number of new technologies have been developed in achieving these objectives. The innovations include directly linking CFD fire simulation with evacuation and abandonment software and automatic data transfer from concept design software allowing rapid generation of ship simulation models. Software usability was augmented by a module for interpretation of evacuation software output. Enhancements to a ship evacuation testing rig have resulted in a unique facility, capable of providing passenger movement data for realistic evacuation scenarios and large scale tests have provided meaningful data for the evacuation simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 1998, Swissair Flight I I I (SR111) developed an in-flight fire shortly after take-off which resulted in the loss of the aircraft, a McDonnell Douglas MD-I 1, and all passengers and crew. The Transportation Safety Board (TSB) of Canada, Fire and Explosion Group launched a four year investigation into the incident in an attempt to understand the cause and subsequent mechanisms which lead to the rapid spread of the in-flight fire. As part of this investigation, the SMARTFIRE Computational Fluid Dynamics (CFD) software was used to predict the 'possible' development of the fire and associated smoke movement. In this paper the CFD fire simulations are presented and model predictions compared with key findings from the investigation. The model predictions are shown to be consistent with a number of the investigation findings associated with the early stages of the fire development. The analysis makes use of simulated pre-fire airflow conditions within the MD-11 cockpit and above ceiling region presented in an earlier publication (Part 1) which was published in The Aeronautical Journal in January 2006(4).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When designing a new passenger ship or naval vessel or modifying an existing design, how do we ensure that the proposed design is safe from an evacuation point of view? In the wake of major maritime disasters such as the Herald of Free Enterprise and the Estonia and in light of the growth in the numbers of high density, high-speed ferries and large capacity cruise ships, issues concerned with the evacuation of passengers and crew at sea are receiving renewed interest. In the maritime industry, ship evacuation models are now recognised by IMO through the publication of the Interim Guidelines for Evacuation Analysis of New and Existing Passenger Ships including Ro-Ro. This approach offers the promise to quickly and efficiently bring evacuation considerations into the design phase, while the ship is "on the drawing board" as well as reviewing and optimising the evacuation provision of the existing fleet. Other applications of this technology include the optimisation of operating procedures for civil and naval vessels such as determining the optimal location of a feature such as a casino, organising major passenger movement events such as boarding/disembarkation or restaurant/theatre changes, determining lean manning requirements, location and number of damage control parties, etc. This paper describes the development of the maritimeEXODUS evacuation model which is fully compliant with IMO requirements and briefly presents an example application to a large passenger ferry.