6 resultados para Ludovico Sforza, Duke of Milan, 1452-1508.

em Greenwich Academic Literature Archive - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the soldering process, the copper atoms diffuse into liquid solders. The diffusion process determines integrity and the reworking possibility of a solder joint. In order to capture the diffusion scenarios of solid copper into liquid Sn–Pb and Sn–Cu solders, a computer modeling has been performed for 10 s. An analytical model has also been proposed for calculating the diffusion coefficient of copper into liquid solders. It is found that the diffusion coefficient for Sn–Pb solder is 2.74 × 10− 10 m2/s and for Sn–Cu solder is 6.44 × 10−9 m2/s. The modeling results reveal that the diffusion coefficient is one of the major factors that govern the rate at which solid Cu dissolve in the molten solder. The predicted dissolved amounts of copper into solders have been validated with the help of scanning electron microscopic analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. To examine the thermal transition(s) between different polymorphic forms of Nifedipine and to define experimental conditions that lead to the generation of polymorph IV. Methods. Experiments were performed using a DSC 823e (Mettler Toledo). Nifedipine exists in four polymorphic forms, as well as an amorphous state. Examination of Nifedipine was conducted using the following method(s): cycle 1: 25ºC to 190ºC, 190ºC to 25ºC (formation of amorphous Nifedipine); cycle 2: 25ºC to X (60,70,80...150ºC), X to 25ºC; cycle 3: 25ºC to 190ºC and holding isothermally for 5 min between cycles (heating/cooling rate of 10ºC/min). Results. The amorphous state Nifedipine can sustain heating up to 90ºC without significant changes in its composition. Cycle 2 of amorphous material heated up to 90ºC shows only the glass transition at ~44ºC. In cycle 3 of the same material, a glass transition has been recorded at ~44ºC, followed by two exotherms (~100 and ~115ºC (crystallisation of polymorph III and II, respectively) and an endotherm (169ºC (melting of polymorphs I/II)). Samples that have been heated to temperatures between 100ºC and 120ºC in the second cycle showed a glass transition at ~44ºC and an additional exotherm at ~95ºC (crystallisation of polymorph III) on cooling a exotherm was observed at ~40ºC (crystallisation of polymorph IV). The same material showed no glass transition in cycle 3 but an endotherm at around 62ºC (melting of polymorph IV) an exotherm (~98ºC) and an endotherm (169ºC) melting of polymorph I/II. Heating the sample to a temperatures greater than 130ºC in cycle two results in a glass transition at ~44ºC, and two exotherms at ~102 and 125ºC (crystallisation of polymorphs III and I, respectively). Conclusions. DSC data suggests that polymorph IV can only be produced from amorphous or polymorph III samples. The presence of polymorph I or II drives the conversion of the less stable polymorphic form IV into the most stable form, I. Although form IV of Nifedipine can easily be created, following defined experimental conditions, it may only coexist with amorphous or polymorph III states. When polymorphs I and II are present in the sample polymorph IV cannot be etected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

B3-LYP/cc-pVDZ calculations of the gas-phase structure and vibrational spectra of the isolated molecule cyclo(L-Ser-L-Ser), a cyclic di-amino acid peptide (CDAP), were carried out by assuming C-2 symmetry. It is predicted that the minimum-energy structure is a boat conformation for the diketopiperazine (DKP) ring with both L-Beryl side chains being folded slightly above the ring. An additional structure of higher energy (15.16 kJ mol(-1)) has been calculated for a DKP ring with a planar geometry, although in this case two fundamental vibrations have been calculated with imaginary wavenumbers. The reported X-ray crystallographic structure of cyclo(L-Ser-L-Ser), shows that the DKP ring displays a near-planar conformation, with both the two L-Beryl side chains being folded above the ring. It is hypothesized that the crystal packing forces constrain the DKP ring in a planar conformation and it is probable that the lower energy boat conformation may prevail in the aqueous environment. Raman scattering and Fourier-transform infrared (FT-IR) spectra of solid state and aqueous solution samples of cyclo(L-Ser-L-Ser) are reported and discussed. Vibrational band assignments have been made on the basis of comparisons with the calculated vibrational spectra and band wavenumber shifts upon deuteration of labile protons. The experimental Raman and IR results for solid-state samples show characteristic amide I vibrations which are split (Raman:1661 and 1687 cm(-1), IR:1666 and 1680 cm(-1)), possibly due to interactions between molecules in a crystallographic unit cell. The cis amide I band is differentiated by its deuterium shift of ~ 30 cm(-1), which is larger than that previously reported for trans amide I deuterium shifts. A cis amide II mode has been assigned to a Raman band located at 1520 cm(-1). The occurrence of this cis amide II mode at a wavenumber above 1500 cm(-1) concurs with results of previously examined CDAP molecules with low molecular weight substituents on the C-alpha atoms, and is also indicative of a relatively unstrained DKP ring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Nicardipine is a member of a family of calcium channel blockers named dihydropiridines that are known to be photolabile and may cause phototoxicity. It is therefore vital to develop analytical method which can study the photodegradation of nicardipine. Method: Forced acid degradation of nicardipine was conducted by heating 12 ml of 1 mg/ml nicardipine with 3 ml of 2.5 M HCl for two hours. A gradient HPLC medthod was developed using Agilent Technologies 1200 series quaternary system. Separation was achieved with a Hichrome (250 x 4.6 mm) 5 μm C18 reversed phase column and mobile phase composition of 70% A(100%v/v water) and 30% B(99%v/v acetonitrile + 1%v/v formic acid) at time zero, composition of A and B was then charged to 60%v/v A;40%v/v B at 10minutes, 50%v/v A; 50%v/v B at 30minutes and 70%v/v A; 30%v/v B at 35minutes. 20μl of 0.8mg/ml of nicardipine degradation was injected at room temperature (25oC). The gradient method was transferred onto a HPLC-ESI-MS system (HP 1050 series - AQUAMAX mass detector) and analysis conducted with an acid degradation concentration of 0.25mg/ml and 20μl injection volume. ESI spectra were acquired in positive ionisation mode with MRM 0-600 m/z. Results: Eleven nicardipine degradation products were detected in the HPLC analysis and the resolution (RS) between the respective degradants where 1.0, 1.2, 6.0, 0.4, 1.7, 3.7, 1.8, 1.0, and 1.7 respectively. Nine degradation products were identified in the ESI spectra with the respective m/z ratio; 171.0, 166.1, 441.2, 423.2, 455.2, 455.2, 331.1, 273.1, and 290.1. The possible molecular formulae for each degradants were ambiguously determined. Conclusion: A sensitive and specific method was developed for the analysis of nicardipine degradants. Method enables detection and quantification of nicardipine degradation products that can be used for the study of the kinetics of nicardipine degradation processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. To study thermal stability of Aspirin and define thermal events that are associated with the thermal degradation of aspirin. Methods. Experiments were performed using a DSC 823e (Mettler Toledo, Swiss). Aspirin is prone to thermal degradation upon exposure to high temperatures. The melting point of aspirin is 140.1±0.4ºC (DSC). Aspirin has been examined by heating samples to 120ºC, 155ºC and 185ºC with subsequent cooling to -55ºC and a final heating to 155ºC. Although different heating and cooling ranges have been used, only results obtained at a rate of 10ºC/min will be presented. All runs where conducted in hermetically sealed pans. Results. Upon heating the sample to 120ºC no significant thermal event can be detected. After cooling the sample and reheating a glass transition can be observed at ~-8ºC, followed by the melting of aspirin at ~139ºC. By heating the sample to 155ºC melting of aspirin has been detected at ~139ºC. On cooling and subsequent heating a glass transition occurs at ~-32ºC, together with a broad crystallisation (onset at ~38ºC and peak maximum at ~57ºC) followed by a broad melting with an onset at 94ºC and peak maximum at ~112ºC. Finally, by heating the sample to 185ºC melting at ~ 139ºC was observed, and upon cooling and reheating a glass transition was detected at ~-26ºC and no further events could be recorded. Conclusions. This research demonstrates that the degradation steps of Aspirin depend on the thermal treatment. The main degradation products of different thermal treatments are currently unknown it is clear that acetic acid, which is one of the degradation products, acts as an antiplasticiser by lowering the glass transition temperature. In addition, due to the presence of the degradation products in liquid form (observed by hot stage microscopy), Aspirin is still present in the sample and recrystallises during the second heating step and melts at much lower temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermally stimulated current (TSC) spectroscopy is attracting increasing attention as a means of materials characterization, particularly in terms of measuring slow relaxation processes in solid samples. However, wider use of the technique within the pharmaceutical field has been inhibited by difficulties associated with the interpretation of TSC data, particularly in terms of deconvoluting dipolar relaxation processes from charge distribution phenomena. Here, we present evidence that space charge and electrode contact effects may play a significant role in the generation of peaks that have thus far proved difficult to interpret. We also introduce the use of a stabilization temperature in order to control the space charge magnitude. We have studied amorphous indometacin as a model drug compound and have varied the measurement parameters (stabilization and polarization temperatures), interpreting the changes in spectral composition in terms of charge redistribution processes. More specifically, we suggested that charge drift and diffusion processes, charge injection from the electrodes and high activation energy charge redistribution processes may all contribute to the appearance of shoulders and 'spurious' peaks. We present recommendations for eliminating or reducing these effects that may allow more confident interpretation of TSC data.