6 resultados para Location of Zeros

em Greenwich Academic Literature Archive - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper a computer simulation tool capable of modelling multi-physics processes in complex geometry has been developed and applied to the casting process. The quest for high-quality complex casting components demanded by the aerospace and automobile industries, requires more precise numerical modelling techniques and one that need to be generic and modular in its approach to modelling multi-processes problems. For such a computer model to be successful in shape casting, the complete casting process needs to be addressed, the major events being:-• Filling of hot liquid metal into a cavity mould • Solidification and latent heat evolution of liquid metal • Convection currents generated in liquid metal by thermal gradients • Deformation of cast and stress development in solidified metal • Macroscopic porosity formation The above phenomena combines the analysis of fluid flow, heat transfer, change of phase and thermal stress development. None of these events can be treated in isolation as they inexorably interact with each other in a complex way. Also conditions such as design of running system, location of feeders and chills, moulding materials and types of boundary conditions can all affect on the final cast quality and must be appropriately represented in the model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Very Large Transport Aircraft (VLTA) pose considerable challenges to designers, operators and certification authorities. Questions concerning seating arrangement, nature and design of recreational space, the number, design and location of internal staircases, the number of cabin crew required and the nature of the cabin crew emergency procedures are just some of the issues that need to be addressed. Other more radical concepts such as blended wing body (BWB) design, involving one or two decks with possibly four or more aisles offer even greater challenges. Can the largest exits currently available cope with passenger flow arising from four or five aisles? Do we need to consider new concepts in exit design? Should the main aisles be made wider to accommodate more passengers? In this paper we demonstrate how computer based evacuation models can be used to investigate these issues through examination of staircase evacuation procedures for VLTA and aisle/exit configuration for BWB cabin layouts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent history, a number of tragic events have borne a consistent message; the social structures that existed prior to and during the evacuation significantly affected the decisions made and the actions adopted by the evacuating population in response to the emergency. This type of influence over behaviour has long been neglected in the modelling community. This paper is an attempt to introduce some of these considerations into evacuation models and to demonstrate their impact. To represent this type of behaviour within evacuation models a mechanism to represent the membership and position within social hierarchies is established. In addition, individuals within the social groupings are given the capacity to communicate relevant pieces of data such as the need to evacuate—impacting the response time—and the location of viable exits—impacting route selection. Furthermore, the perception and response to this information is also affected by the social circumstances in which individuals find themselves. Copyright © 2005 John Wiley & Sons, Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the current paper, the authors present an analysis of the structural characteristics of an intermediate rail vehicle and their effects on crash performance of the vehicle. Theirs is a simulation based analysis involving four stages. First, the crashworthiness of the vehicle is assessed by simulating an impact of the vehicle with a rigid wall. Second, the structural characteristics of the vehicle are analysed based on the structural behaviour during this impact and then the structure is modified. Third, the modified vehicle is tested again in the same impact scenario with a rigid wall. Finally, the modified vehicle is subjected to a modelled head-on impact which mirrors the real-life impact interface between two intermediate vehicles in a train impact. The emphasis of the current study is on the structural characteristics of the intermediate vehicle and the differences compared to an impact of a leading vehicle. The study shows that, similar to a leading vehicle, bending, or jackknifing is a main form of failure in this conventionally designed intermediate vehicle. It has also been found that the location of the door openings creates a major difference in the behaviour of an intermediate vehicle. It causes instability of the vehicle in the door area and leads to high stresses at the joint of the end beam with the solebar and shear stresses at the joint of the inner pillar with the cantrail. Apart from this, the shapes of the vehicle ends and impact interfaces are also different and have an effect on the crash performance of the vehicles. The simulation results allow the identification of the structural characteristics and show the effectiveness of relevant modifications. The conclusions have general relevance for the crashworthiness of rail vehicle design

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The trend towards miniaturization of electronic products leads to the need for very small sized solder joints. Therefore, there is a higher reliability risk that too large a fraction of solder joints will transform into Intermetallic Compounds (IMCs) at the solder interface. In this paper, fracture mechanics study of the IMC layer for SnPb and Pb-free solder joints was carried out using finite element numerical computer modelling method. It is assumed that only one crack is present in the IMC layer. Linear Elastic Fracture Mechanics (LEFM) approach is used for parametric study of the Stress Intensity Factors (SIF, KI and KII), at the predefined crack in the IMC layer of solder butt joint tensile sample. Contrary to intuition, it is revealed that a thicker IMC layer in fact increases the reliability of solder joint for a cracked IMC. Value of KI and KII are found to decrease with the location of the crack further away from the solder interfaces while other parameters are constant. Solder thickness and strain rate were also found to have a significant influence on the SIF values. It has been found that soft solder matrix generates non-uniform plastic deformation across the solder-IMC interface near the crack tip that is responsible to obtain higher KI and KII.