9 resultados para Liquid metals.

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the casting of reactive metals, such as titanium alloys, contamination can be prevented if there is no contact between the hot liquid metal and solid crucible. This can be achieved by containing the liquid metal by means of high frequency AC magnetic field. A water cooled current-carrying coil, surrounding the metal can then provide the required Lorentz forces, and at the same time the current induced in the metal can provide the heating required to melt it. This ‘attractive’ processing solution has however many problems, the most serious being that of the control and containment of the liquid metal envelope, which requires a balance of the gravity and induced inertia forces on the one side, and the containing Lorentz and surface tension forces on the other. To model this process requires a fully coupled dyna ic solution of the flow fields, magnetic field and heat transfer/melding process to account for. A simplified solution has been published previously providing quasi-static solutions only, by taking the irrotational ‘magnetic pressure’ term of the Lorentz force into account. The authors remedy this deficiency by modelling the full problem using CFD techniques. The salient features of these techniques are included in this paper, as space allows.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The CFD modelling of metals reduction processes particularly always seems to involve the interaction of liquid metals, a gas (often air) top space, liquid droplets in the top space and injection of both solid particles and gaseous bubbles into the bath. These phases all interact and exhange mass, momentum and energy. Often it is the extent to which these multi-phase phemomena can be effectively captured within the CFD model which determines whether or not a tool of genuine use to the target industry sector can constructed. In this paper we discuss these issues in the context of two problems - one involving the injection of sparging gases into a steel continuous caster and the other based on the development of a novel process for aluminium electrolysis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A multi-phase framework is typically required for the CFD modelling of metals reduction processes. Such processes typically involve the interaction of liquid metals, a gas (often air) top space, liquid droplets in the top space and injection of both solid particles and gaseous bubbles into the bath. The exchange of mass, momentum and energy between the phases is fundamental to these processes. Multi-phase algorithms are complex and can be unreliable in terms of either or both convergence behaviour or in the extent to which the physics is captured. In this contribution, we discuss these multi-phase flow issues and describe an example of each of the main “single phase” approaches to modelling this class of problems (i.e., Eulerian–Lagrangian and Eulerian–Eulerian). Their utility is illustrated in the context of two problems – one involving the injection of sparging gases into a steel continuous slab caster and the other based on the development of a novel process for aluminium electrolysis. In the steel caster, the coupling of the Lagrangian tracking of the gas phase with the continuum enables the simulation of the transient motion of the metal–flux interface. The model of the electrolysis process employs a novel method for the calculation of slip velocities of oxygen bubbles, resulting from the dissolution of alumina, which allows the efficiency of the process to be predicted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are many processes, particularly in the nuclear and metals processing industries, where electromagnetic fields are used to influence the flow behaviour of a fluid. Procedures exploiting finite volume (FV) methods in both structured and unstructured meshes have recently been developed which enable this influence to be modelled in the context of conventional FV CFD codes. A range of problems have been tackled by the authors, including electromagnetic pumps and brakes, weirs and dams in steelmaking tundishes and interface effects in aluminium smelting cells. Two cases are presented here, which exemplify the application of the new procedures. The first case investigates the influence of electromagnetic fields on solidification front progression in a tin casting and the second case shows how the liquid metals free surface may be controlled through an externally imposed magnetic field in the semi-levitation casting process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electromagnetic processing of liquid metals involves dynamic change of the fluid volume interfacing with a melting solid material, gas or vacuum, and possibly a different liquid. Electromagnetic field and the associated force field are strongly coupled to the free surface dynamics and the heat-mass transfer. We present practical modelling examples of the flow and heat transfer using an accurate pseudo-spectral code and the k-omega turbulence model suitable for complex and transitional flows with free surfaces. The 'cold crucible' melting is modelled dynamically including the melting front gradual propagation and the magnetically confined free surrounding interface. Intermittent contact with the water-cooled segmented wall and the radiation heat losses are parts of the complex problem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Induction Skull Melting (ISM) is a technique for heating, melting, mixing and, possibly, evaporating reactive liquid metals at high temperatures with a minimum contact at solid walls. The presented numerical modelling involves the complete time dependent process analysis based on the coupled electromagnetic, temperature and turbulent velocity fields during the melting and liquid shape changes. The simulation model is validated against measurements of liquid metal height, temperature and heat losses in a commercial size ISM furnace. The observed typical limiting temperature plateau for increasing input electrical power is explained by the turbulent convective heat losses. Various methods to increase the superheat within the liquid melt, the process energy efficiency and stability are proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Induction Skull Melting (ISM) is used for heating, melting, mixing and, possibly, evaporating reactive liquid metals at high temperatures when a minimum contact at solid walls is required. The numerical model presented here involves the complete time dependent process analysis based on the coupled electromagnetic, temperature and turbulent velocity fields during the melting and liquid shape changes. The simulation is validated against measurements of liquid metal height, temperature and heat losses in a commercial size ISM furnace. The often observed limiting temperature plateau for ever increasing electrical power input is explained by the turbulent convective heat losses. Various methods to increase the superheat within the liquid melt, the process energy efficiency and stability are proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold crucible furnace is widely used for melting reactive metals for high quality castings. Although the water cooled copper crucible avoids contamination, it produces a low superheat of the melt. Experimental and theoretical investigations of the process showed that the increase of the supplied power to the furnace leads to a saturation in the temperature rise of the melt, and no significant increase of the melt superheat can be obtained. The computer model of theprocess has been developed to simulate the time dependent turbulent flow, heat transfer with phase change, and AC and DC magnetohydrodynamics in a time varying liquid metal envelope. The model predicts that the supermimposition of a strong DC field on top of the normal AC field reduces the level of turbulience and stirring in the liquid metal, thereby reducing the heat loss through the base of the crucible and increasing the superheat. The direct measurements of the temperature in the commercial size cold crucbile has confirmed the computer redictions and showed that the addition of a DC field increased the superheat in molten TiAl from ~45C (AC field only) to ~81C (DC+AC fields). The present paper reports further predictions of the effect of a dDC field on top of the AC field and compares these with experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electromagnetic levitation of liquid metal droplets can be used to measure the properties of highly reactive liquid materials. Two independent numerical models, the commercial COMSOL and the spectral-collocation based free surface code SPHINX, have been applied to solve the transient electromagnetic, fluid flow and thermodynamic equations, which describe the levitated liquid motion and heating processes. The SPHINX model incorporates free surface deformation to accurately model the oscillations that result from the interaction between the electromagnetic and gravity forces, temperature dependent surface tension, magnetically controlled turbulent momentum transport. The models are adapted to incorporate periodic laser heating at the top of the droplet, which is used to measure the thermal conductivity of the material. Novel effects in the levitated droplet of magnetically damped turbulence and nonlinear growth of velocities in high DC magnetic field are analysed.