4 resultados para Lipid Peroxidation

em Greenwich Academic Literature Archive - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epilobium parviflorum Schreb. (Onagraceae) is used for the treatment of benign prostatic hyperplasia (BPH), but its biological action is not entirely identified. This paper aims to report data on E. parviflorum with respect to its antioxidant and antiinflammatory effects. The aqueous acetone extract of E. parviflorum showed higher antioxidant effect in the DPPH assay than well known antioxidants and inhibited the lipid peroxidation determined by the TBA assay (IC(50) = 2.37 +/- 0.12 mg/mL). In concentrations of 0.2-15.0 microg/mL the extract possessed a protective effect, comparable to catalase (250 IU/mL), against oxidative damage, generated in fibroblast cells. In the COX inhibition assay E. parviflorum decreased the PGE(2) release, so showing inhibition of the COX-enzyme (IC(50) = 1.4 +/- 0.1 microg/mL).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The antioxidant potential of fresh leaves of Peltiphyllum peltatum (Torr.) Engl. (Saxfragaceae) was analysed by measuring scavenging potential against l,l'-diphenyl-2-picrylhydrazyl (DPPH center dot) and hydroxyl radicals (W), reducing power, inhibition of lipid peroxidation and protection of cultured cells from a lethal dose of hydrogen peroxide (H2O2). In all chemical assays used, the crude ethanolic extract of leaves of P. peltatum, which contained 21.8 +/- 1.7% (w/w, n = 3) of total phenols, was as effective as the standard antioxidant compound, rutin. Fractionation of the crude extract with solvent of increasing polarity (namely, petroleum ether, chloroform, ethyl acetate, butanol and water) led to identification of the active fractions (ethyl acetate and butanol fractions). The crude extract and its active fractions, but not rutin, protected cultured RAW 264.7 macrophages from a lethal dose Of H2O2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epilobium parviflorum Schreb. (Onagraceae) is used for the treatment of benign prostatic hyperplasia (BPH), which is regarded as an endocrine disorder caused by age-related hormone imbalance and increased oxidative damage [1,2,3]. Epilobium can moderate the obstructive and the irritative symptoms of BPH [1] but its biological action is not entirely identified. E. parviflorum is rich in phytosterols, flavonoids (myricetin, quercetin, kaempferol and their glycosides), phenolic acids, catechins, ellagi- and gallotannins [4]. The potential biological effects of Epilobium parviflorum Schreb. have been investigated, in respect to its antioxidant, anti-inflammatory, enzyme-inhibitory and anti-androgenic effect. The whole-plant water extract showed higher antioxidant effect (IC50=1.65±0.05µg/mL) in DPPH assay than Trolox or ascorbic acid and inhibited the lipid peroxidation examined in TBA assay (IC50=2.31±0.18mg/mL). In concentrations 0.20-15.00µg/mL the extract possessed a protective effect comparable to catalase enzyme (2500 IU/mL), against oxidative damage generated on fibroblast cells. The examination of the COX-inhibitory effect showed that E. parviflorum had an anti-inflammatory effect (IC50=1.38±0.08µg/mL). Investigation of steroid receptor binding ability and the aromatase enzyme-inhibition showed negative results in the concentration range examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The one-step dispersion of HiPco single-walled carbon nanotubes in aqueous media with the use of a synthetic lyso-phosphatidylcholine was studied. Solubilization occurs through wrapping of lipid molecules around the circumference of the tubes, yielding lipid monolayers on the graphitic sidewalls as evidenced by atomic force microscopy imaging and dynamic light scattering measurements. Raman spectroscopy showed that the dispersion and centrifugation process leads to an effective enrichment of the stable aqueous suspension in carbon nanostructures with smaller diameters.