2 resultados para Library Company of Philadelphia.
em Greenwich Academic Literature Archive - UK
Resumo:
Mathematical models of straight-grate pellet induration processes have been developed and carefully validated by a number of workers over the past two decades. However, the subsequent exploitation of these models in process optimization is less clear, but obviously requires a sound understanding of how the key factors control the operation. In this article, we show how a thermokinetic model of pellet induration, validated against operating data from one of the Iron Ore Company of Canada (IOCC) lines in Canada, can be exploited in process optimization from the perspective of fuel efficiency, production rate, and product quality. Most existing processes are restricted in the options available for process optimization. Here, we review the role of each of the drying (D), preheating (PH), firing (F), after-firing (AF), and cooling (C) phases of the induration process. We then use the induration process model to evaluate whether the first drying zone is best to use on the up- or down-draft gas-flow stream, and we optimize the on-gas temperature profile in the hood of the PH, F, and AF zones, to reduce the burner fuel by at least 10 pct over the long term. Finally, we consider how efficient and flexible the process could be if some of the structural constraints were removed (i.e., addressed at the design stage). The analysis suggests it should be possible to reduce the burner fuel lead by 35 pct, easily increase production by 5+ pct, and improve pellet quality.
A policy-definition language and prototype implementation library for policy-based autonomic systems
Resumo:
This paper presents work towards generic policy toolkit support for autonomic computing systems in which the policies themselves can be adapted dynamically and automatically. The work is motivated by three needs: the need for longer-term policy-based adaptation where the policy itself is dynamically adapted to continually maintain or improve its effectiveness despite changing environmental conditions; the need to enable non autonomics-expert practitioners to embed self-managing behaviours with low cost and risk; and the need for adaptive policy mechanisms that are easy to deploy into legacy code. A policy definition language is presented; designed to permit powerful expression of self-managing behaviours. The language is very flexible through the use of simple yet expressive syntax and semantics, and facilitates a very diverse policy behaviour space through both hierarchical and recursive uses of language elements. A prototype library implementation of the policy support mechanisms is described. The library reads and writes policies in well-formed XML script. The implementation extends the state of the art in policy-based autonomics through innovations which include support for multiple policy versions of a given policy type, multiple configuration templates, and meta-policies to dynamically select between policy instances and templates. Most significantly, the scheme supports hot-swapping between policy instances. To illustrate the feasibility and generalised applicability of these tools, two dissimilar example deployment scenarios are examined. The first is taken from an exploratory implementation of self-managing parallel processing, and is used to demonstrate the simple and efficient use of the tools. The second example demonstrates more-advanced functionality, in the context of an envisioned multi-policy stock trading scheme which is sensitive to environmental volatility