9 resultados para Laplace inverse transform
em Greenwich Academic Literature Archive - UK
Resumo:
The solution process for diffusion problems usually involves the time development separately from the space solution. A finite difference algorithm in time requires a sequential time development in which all previous values must be determined prior to the current value. The Stehfest Laplace transform algorithm, however, allows time solutions without the knowledge of prior values. It is of interest to be able to develop a time-domain decomposition suitable for implementation in a parallel environment. One such possibility is to use the Laplace transform to develop coarse-grained solutions which act as the initial values for a set of fine-grained solutions. The independence of the Laplace transform solutions means that we do indeed have a time-domain decomposition process. Any suitable time solver can be used for the fine-grained solution. To illustrate the technique we shall use an Euler solver in time together with the dual reciprocity boundary element method for the space solution
Resumo:
A distributed algorithm is developed to solve nonlinear Black-Scholes equations in the hedging of portfolios. The algorithm is based on an approximate inverse Laplace transform and is particularly suitable for problems that do not require detailed knowledge of each intermediate time steps.
Resumo:
Financial modelling in the area of option pricing involves the understanding of the correlations between asset and movements of buy/sell in order to reduce risk in investment. Such activities depend on financial analysis tools being available to the trader with which he can make rapid and systematic evaluation of buy/sell contracts. In turn, analysis tools rely on fast numerical algorithms for the solution of financial mathematical models. There are many different financial activities apart from shares buy/sell activities. The main aim of this chapter is to discuss a distributed algorithm for the numerical solution of a European option. Both linear and non-linear cases are considered. The algorithm is based on the concept of the Laplace transform and its numerical inverse. The scalability of the algorithm is examined. Numerical tests are used to demonstrate the effectiveness of the algorithm for financial analysis. Time dependent functions for volatility and interest rates are also discussed. Applications of the algorithm to non-linear Black-Scholes equation where the volatility and the interest rate are functions of the option value are included. Some qualitative results of the convergence behaviour of the algorithm is examined. This chapter also examines the various computational issues of the Laplace transformation method in terms of distributed computing. The idea of using a two-level temporal mesh in order to achieve distributed computation along the temporal axis is introduced. Finally, the chapter ends with some conclusions.
Resumo:
Finance is one of the fastest growing areas in modern applied mathematics with real world applications. The interest of this branch of applied mathematics is best described by an example involving shares. Shareholders of a company receive dividends which come from the profit made by the company. The proceeds of the company, once it is taken over or wound up, will also be distributed to shareholders. Therefore shares have a value that reflects the views of investors about the likely dividend payments and capital growth of the company. Obviously such value will be quantified by the share price on stock exchanges. Therefore financial modelling serves to understand the correlations between asset and movements of buy/sell in order to reduce risk. Such activities depend on financial analysis tools being available to the trader with which he can make rapid and systematic evaluation of buy/sell contracts. There are other financial activities and it is not an intention of this paper to discuss all of these activities. The main concern of this paper is to propose a parallel algorithm for the numerical solution of an European option. This paper is organised as follows. First, a brief introduction is given of a simple mathematical model for European options and possible numerical schemes of solving such mathematical model. Second, Laplace transform is applied to the mathematical model which leads to a set of parametric equations where solutions of different parametric equations may be found concurrently. Numerical inverse Laplace transform is done by means of an inversion algorithm developed by Stehfast. The scalability of the algorithm in a distributed environment is demonstrated. Third, a performance analysis of the present algorithm is compared with a spatial domain decomposition developed particularly for time-dependent heat equation. Finally, a number of issues are discussed and future work suggested.
Resumo:
Numerical solutions of realistic 2-D and 3-D inverse problems may require a very large amount of computation. A two-level concept on parallelism is often used to solve such problems. The primary level uses the problem partitioning concept which is a decomposition based on the mathematical/physical problem. The secondary level utilizes the widely used data partitioning concept. A theoretical performance model is built based on the two-level parallelism. The observed performance results obtained from a network of general purpose Sun Sparc stations are compared with the theoretical values. Restrictions of the theoretical model are also discussed.
Resumo:
A mathematical model and a numerical scheme for the inverse determination of heat sources generated by means of a welding process is presented in this paper. The accuracy of the heat source retrieval is discussed.
Resumo:
This paper considers a Markovian bulk-arriving queue modified to allow both mass arrivals when the queue is idle and mass departures which allow for the possibility of removing the entire workload. Properties of queues which terminate when the server becomes idle are developed first, since these play a key role in later developments. Results for the case of mass arrivals, but no mass annihilation, are then constructed with specific attention being paid to recurrence properties, equilibrium queue-size structure, and waiting-time distribution. A closed-form expression for the expected queue size and its Laplace transform are also established. All of these results are then generalised to allow for the removal of the entire workload, with closed-form expressions being developed for the equilibrium size and waiting-time distributions.
Resumo:
The ATTMA "Aerosol Transport in the Trans-Manche Atmosphere" project investigates the transportation and dispersion of air pollutants across the English Channel, in collaboration with local authorities and other Universities in Southern England and Northern France. The research is concerned with both forward and inverse (receptor based) tracking. Two alternative dispersion simulation methods are used: (a) Lagrangian Particle Dispersion (LPD) models, (b) Eulerian Finite Volume type models. This paper is concerned with part (a), the simulations based on LPD models. Two widely applied LPD models are used and compared. Since in many observed episodes the source of pollution is traced outside the region of interest, long range, trans-continental transport is also investigated.
Resumo:
A parallel genetic algorithm (PGA) is proposed for the solution of two-dimensional inverse heat conduction problems involving unknown thermophysical material properties. Experimental results show that the proposed PGA is a feasible and effective optimization tool for inverse heat conduction problems