5 resultados para Laplace Equation

em Greenwich Academic Literature Archive - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A 3D model of melt pool created by a moving arc type heat sources has been developed. The model solves the equations of turbulent fluid flow, heat transfer and electromagnetic field to demonstrate the flow behaviour phase-change in the pool. The coupled effects of buoyancy, capillary (Marangoni) and electromagnetic (Lorentz) forces are included within an unstructured finite volume mesh environment. The movement of the welding arc along the workpiece is accomplished via a moving co-ordinator system. Additionally a method enabling movement of the weld pool surface by fluid convection is presented whereby the mesh in the liquid region is allowed to move through a free surface. The surface grid lines move to restore equilibrium at the end of each computational time step and interior grid points then adjust following the solution of a Laplace equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A defect equation for the coupling of nonlinear subproblems defined in nonoverlapped subdomains arise in domain decomposition methods is presented. Numerical solutions of defect equations by means of quasi-Newton methods are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A parallel time-domain algorithm is described for the time-dependent nonlinear Black-Scholes equation, which may be used to build financial analysis tools to help traders making rapid and systematic evaluation of buy/sell contracts. The algorithm is particularly suitable for problems that do not require fine details at each intermediate time step, and hence the method applies well for the present problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solution process for diffusion problems usually involves the time development separately from the space solution. A finite difference algorithm in time requires a sequential time development in which all previous values must be determined prior to the current value. The Stehfest Laplace transform algorithm, however, allows time solutions without the knowledge of prior values. It is of interest to be able to develop a time-domain decomposition suitable for implementation in a parallel environment. One such possibility is to use the Laplace transform to develop coarse-grained solutions which act as the initial values for a set of fine-grained solutions. The independence of the Laplace transform solutions means that we do indeed have a time-domain decomposition process. Any suitable time solver can be used for the fine-grained solution. To illustrate the technique we shall use an Euler solver in time together with the dual reciprocity boundary element method for the space solution

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Financial modelling in the area of option pricing involves the understanding of the correlations between asset and movements of buy/sell in order to reduce risk in investment. Such activities depend on financial analysis tools being available to the trader with which he can make rapid and systematic evaluation of buy/sell contracts. In turn, analysis tools rely on fast numerical algorithms for the solution of financial mathematical models. There are many different financial activities apart from shares buy/sell activities. The main aim of this chapter is to discuss a distributed algorithm for the numerical solution of a European option. Both linear and non-linear cases are considered. The algorithm is based on the concept of the Laplace transform and its numerical inverse. The scalability of the algorithm is examined. Numerical tests are used to demonstrate the effectiveness of the algorithm for financial analysis. Time dependent functions for volatility and interest rates are also discussed. Applications of the algorithm to non-linear Black-Scholes equation where the volatility and the interest rate are functions of the option value are included. Some qualitative results of the convergence behaviour of the algorithm is examined. This chapter also examines the various computational issues of the Laplace transformation method in terms of distributed computing. The idea of using a two-level temporal mesh in order to achieve distributed computation along the temporal axis is introduced. Finally, the chapter ends with some conclusions.