9 resultados para Lagrangian surfaces

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formulation of the carrier-phase momentum and enthalpy source terms in mixed Lagrangian-Eulerian models of particle-laden flows is frequently reported inaccurately. Under certain circumstances, this can lead to erroneous implementations, which violate physical laws. A particle- rather than carrier-based approach is suggested for a consistent treatment of these terms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semi-Lagrangian finite volume scheme for solving viscoelastic flow problems is presented. A staggered grid arrangement is used in which the dependent variables are located at different mesh points in the computational domain. The convection terms in the momentum and constitutive equations are treated using a semi-Lagrangian approach in which particles on a regular grid are traced backwards over a single time-step. The method is applied to the 4 : 1 planar contraction problem for an Oldroyd B fluid for both creeping and inertial flow conditions. The development of vortex behaviour with increasing values of We is analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semi-Lagrangian finite volume schemes for the numerical approximation of linear advection equations are presented. These schemes are constructed so that the conservation properties are preserved by the numerical approximation. This is achieved using an interpolation procedure based on area-weighting. Numerical results are presented illustrating some of the features of these schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new finite volume method for solving the incompressible Navier--Stokes equations is presented. The main features of this method are the location of the velocity components and pressure on different staggered grids and a semi-Lagrangian method for the treatment of convection. An interpolation procedure based on area-weighting is used for the convection part of the computation. The method is applied to flow through a constricted channel, and results are obtained for Reynolds numbers, based on half the flow rate, up to 1000. The behavior of the vortex in the salient corner is investigated qualitatively and quantitatively, and excellent agreement is found with the numerical results of Dennis and Smith [Proc. Roy. Soc. London A, 372 (1980), pp. 393-414] and the asymptotic theory of Smith [J. Fluid Mech., 90 (1979), pp. 725-754].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a mixed Eulerian-Lagrangian approach for the modelling metal extrusion processes is presented. The approach involves the solution of non-Newtonian fluid flow equations in an Eulerian context, using a free-surface algorithm to track the behaviour of the workpiece and its extrusion. The solid mechanics equations associated with the tools are solved in Lagangrian context. Thermal interactions between the workpiece are modelled and a fluid-structure interaction technique is employed to model the effect of the fluid traction load imposed by the workpiece on the tools. Two extrusion test cases are investigated and the results obtained show the potential of the model with regard to representing the physics of the process and the simulation time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Freeze-dried (lyophilised) wafers and solvent cast films from sodium alginate (ALG) and sodium carboxymethylcellulose (CMC) have been developed as potential drug delivery systems for mucosal surfaces including wounds. The wafers (ALG, CMC) and films (CMC) were prepared by freeze-drying and drying in air (solvent evaporation) respectively, aqueous gels of the polymers containing paracetamol as a model drug. Microscopic architecture was examined using scanning electron microscopy, hydration characteristics with confocal laser scanning microscopy and dynamic vapour sorption. Texture analysis was employed to investigate mechanical characteristics of the wafers during compression. Differential scanning calorimetry was used to investigate polymorphic changes of paracetamol occurring during formulation of the wafers and films. The porous freeze-dried wafers exhibited higher drug loading and water absorption capacity than the corresponding solvent evaporated films. Moisture absorption, ease of hydration and mechanical behaviour were affected by the polymer and drug concentration. Two polymorphs of paracetamol were observed in the wafers and films, due to partial conversion of the original monoclinic to the orthorhombic polymorph during the formulation process. The results showed the potential of employing the freeze-dried wafers and solvent evaporated films in diverse mucosal applications due to their ease of hydration and based on different physical mechanical properties exhibited by both type of formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solvent-cast films from three polymers, carboxymethylcellulose (CMC), sodium alginate (SA), and xanthan gum, were prepared by drying the polymeric gels in air. Three methods, (a) passive hydration, (b) vortex hydration with heating, and (c) cold hydration, were investigated to determine the most effective means of preparing gels for each of the three polymers. Different drying conditions [relative humidity - RH (6-52%) and temperature (3-45 degrees C)] were investigated to determine the effect of drying rate on the films prepared by drying the polymeric gels. The tensile properties of the CMC films were determined by stretching dumbbell-shaped films to breaking point, using a Texture Analyser. Glycerol was used as a plasticizer, and its effects on the drying rate, physical appearance, and tensile properties of the resulting films were investigated. Vortex hydration with heating was the method of choice for preparing gels of SA and CMC, and cold hydration for xanthan gels. Drying rates increased with low glycerol content, high temperature, and low relative humidity. The residual water content of the films increased with increasing glycerol content and high relative humidity and decreased at higher temperatures. Generally, temperature affected the drying rate to a greater extent than relative humidity. Glycerol significantly affected the toughness (increased) and rigidity (decreased) of CMC films. CMC films prepared at 45 degrees C and 6% RH produced suitable films at the fastest rate while films containing equal quantities of glycerol and CMC possessed an ideal balance between flexibility and rigidity.