18 resultados para LUTING CEMENTS

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Portland cement (PC) and blended cements containing pulverized fuel ash (PFA) or granulated blast-furnace slag (GGBS) were used to solidify/stabilize an electroplating sludge in this work. The acid neutralization capacity (ANC) of the hydrated pastes increased in the order of PC > PC/GGBS > PC/PFA. The GGBS or PFA replacement (80 wt%) reduced the ANC of the hydrated pastes by 30–50%. The ANC of the blended cement-solidified electroplating sludge (cement/sludge 1:2) was 20–30% higher than that of the hydrated blended cement pastes. Upon carbonation, there was little difference in the ANC of the three cement pastes, but the presence of electroplating sludge (cement/sludge 1:2) increased the ANC by 20%. Blended cements were more effective binders for immobilization of Ni, Cr and Cu, compared with PC, whereas Zn was encapsulated more effectively in the latter. Accelerated carbonation improved the immobilization of Cr, Cu and Zn, but not Ni. The geochemical code PHREEQC, with the edited database from EQ3/6 and HATCHES, was used to calculate the saturation index and solubility of likely heavy metal precipitates in cement-based solidification/stabilization systems. The release of heavy metals could be related to the disruption of cement matrices and the remarkable variation of solubility of heavy metal precipitates at different pH values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water loss behaviour of a clinical glass-ionomer dental cement has been studied with and without the addition of alkali metal chlorides. Dehydrating conditions were provided by placing specimens in a desiccator over concentrated sulphuric acid. Cements were prepared using either pure water or an aqueous solution of metal chloride (LiCl, NaCl, KCl) at 1.0 mol/dm(3). In addition, NaCl at 0.5 mol/dm(3) was also used to fabricate cements. Disc-shaped specimens of size 6 mm diameter x 2 mm thickness were made, six performulation, and cured at 37 degrees C for 1 hour They were then exposed to desiccating conditions, and the mass measured at regular intervals. All formulations were found to lose water in a diffusion process that equilibrated after approximately 3 weeks. Diffusion coefficients ranged from 2.27 (0.13) x 10(9) with no additive to 1.85 (0.07) x 10(9) m(2)/s with 1.0 mol/dm(3) KCl. For the salts, diffusion coefficients decreased in the order LiCl > NaCl > KCl. There was no statistically significant difference between the diffusion coefficients for 1.0 and 0.5 mol/dm(3) NaCl. For all salts at 1.0 mol/dm(3) and also additive-free cements, equilibrium losses were, with statistical limits, the same, ranging from 6.23 to 6.34%. On the other hand, 0.5 mol/dm(3) NaCl lost significantly more water 7.05%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of aluminum in glass-ionomers and resin-modified glass-ionomers for dentistry is reviewed. Aluminum is included in the glass component of these materials in the form of Al(2)O(3) to confer basicity on the glass and enable the glass to take part in the acid-base setting reactions. Results of studies of these reactions by FTIR and magic-angle spinning (MAS)-NMR spectroscopy are reported and the role of aluminum is discussed in detail. Aluminum has been shown to be present in the glasses in predominantly 4-coordination, as well as 5- and 6-coordination, and during setting a proportion of this is converted to 6-coordinate species within the matrix of the cement. Despite this, mature cements may contain detectable amounts of both 4- and 5-coordinate aluminum. Aluminum has been found to be leached from glass-ionomer cements, with greater amounts being released under acidic conditions. It may be associated with fluoride, with which it is known to complex strongly. Aluminum that enters the body via the gastro-intestinal tract is mainly excreted, and only about 1% ingested aluminum crosses the gut wall. Calculation shows that, if a glass-ionomer filling dissolved completely over 5 years, it would add only an extra 0.5% of the recommended maximum intake of aluminum to an adult patient. This leads to the conclusion that the release of aluminum from either type of glass-ionomer cement in the mouth poses a negligible health hazard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: The biological effects of resin-modified glass-ionomer cements as used in clinical dentistry are described, and the literature reviewed on this topic. METHODS: Information on resin-modified glass-ionomers and on 2-hydroxyethyl methacrylate (HEMA), the most damaging substance released by these materials, has been collected from over 50 published papers. These were mainly identified through Scopus. RESULTS: HEMA is known to be released from these materials and has a variety of damaging biological properties, ranging from pulpal inflammation to allergic contact dermatitis. These are therefore potential hazards from resin-modified glass-ionomers. However, clinical results with these materials that have been reported to date are generally positive. CONCLUSIONS/SIGNIFICANCE: Resin-modified glass-ionomers cannot be considered biocompatible to nearly the same extent as conventional glass-ionomers. Care needs to be taken with regard to their use in dentistry and, in particular, dental personnel may be at risk from adverse effects such as contact dermatitis and other immunological responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water sorption and desorption behaviour of three commercial glass-ionomer cements used in clinical dentistry have been studied in detail. Cured specimens of each material were found to show slight but variable water uptake in high humidity conditions, but steady loss in desiccating ones. This water loss was found to follow Fick's law for the first 4-5 h. Diffusion coefficients at 22 degrees C were: Chemflex 1.34 x 10(-6) cm(2) s(-1), Fuji IX 5.87 x 10(-7) cm(2) s(-1), Aquacem 3.08 x 10(-6) cm(2) s(-1). At 7 degrees C they were: Chemflex 8.90 x 10(-7) cm(2) s(-1), Fuji IX 5.04 x 10(-7) cm(2) s(-1), Aquacem 2.88 x 10(-6) cm(2) s(-1). Activation energies for water loss were determined from the Arrhenius equation and were found to be Chemflex 161.8 J mol(-1), Fuji IX 101.3 J mol(-1), Aquacem 47.1 J mol(-1). Such low values show that water transport requires less energy in these cements than in resin-modified glass-ionomers. Fick's law plots were found not to pass through the origin. This implies that, in each case, there is a small water loss that does not involve diffusion. This was concluded to be water at the surface of the specimens, and was termed "superficial water". As such, it represents a fraction of the previously identified unbound (loose) water. Superficial water levels were: Chemflex 0.56%, Fuji IX 0.23%, Aquacem 0.87%. Equilibrium mass loss values were shown to be unaffected by temperature, and allowed ratios of bound:unbound water to be determined for all three cements. These showed wide variation, ranging from 1:5.26 for Chemflex to 1:1.25 for Fuji IX.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water desorption behaviour of three different zinc oxide dental cements (two polycarboxylates, one phosphate) has been studied in detail. Disc-shaped specimens of each material were prepared and allowed to lose water by being subjected to a low humidity desiccating atmosphere over concentrated sulfuric acid. In all three cements, water loss was found to follow Fick's second law for at least 6 h (until M(t)/M(infinity) values were around 0.5), with diffusion coefficients ranging from 6.03 x 10(-8 )cm(2 )s(-1) (for the zinc phosphate) to 2.056 x 10(-7 )cm(2 )s(-1) (for one of the zinc polycarboxylates, Poly F Plus). Equilibration times for desorption were of the order of 8 weeks, and equilibrium water losses ranged from 7.1% for zinc phosphate to 16.9% and 17.4% for the two zinc polycarboxylates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of zinc oxide-based dental cements (zinc phosphate and zinc polycarboxylate) to take up fluoride from aqueous solution has been studied. Only zinc phosphate cement was found to take up any measurable fluoride after 5 h exposure to the solutions. The zinc oxide filler of the zinc phosphate also failed to take up fluoride from solution. The key interaction for this uptake was thus shown to involve the phosphate groups of the set cement. However, whether this took the form of phosphate/fluoride exchange, or the formation of oxyfluoro-phosphate groups was not clear. Fluoride uptake followed radicaltime kinetics for about 2 h in some cases, but was generally better modelled by the Elovich equation, dq(t)/dt = alpha exp(-beta q(t)). Values for alpha varied from 3.80 to 2.48 x 10(4), and for beta from 7.19 x 10(-3) to 0.1946, though only beta showed any sort of trend, becoming smaller with increasing fluoride concentration. Fluoride was released from the zinc phosphate cements in processes that were diffusion based up to M(t)/M(infinity) of about 0.4. No further release occurred when specimens were placed in fresh volumes of deionised water. Only a fraction of the fluoride taken up was re-released, demonstrating that most of the fluoride taken up becomes irreversibly bound within the cement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was determine whether bonding of glass-ionomer cements to non-carious dentine differed from that to carious dentine. Five commercial cements were used, namely Fuji IX GP, Fuji IX capsulated, Fuji IX Fast capsulated (all GC, Japan), Ketac-Molar and Ketac-Molar Aplicap (both 3M-ESPE, Germany). Following conditioning of the substrate with 10% poly (acrylic acid) for 10 s, sets of 10 samples of the cements were bonded to prepared teeth that had been removed for orthodontic reasons. The teeth used had either sound dentine or sclerotic dentine. Shear bond strengths were determined following 24 h storage. For the auto-mixed cements, shear bond strength to sound dentine was found not to differ statistically from shear bond strength to sclerotic dentine whereas for hand-mixed cements, shear bond to sound dentine was found to be higher than to carious dentine (to at least p < 0.05). This shows that the chemical effects arising from interactions of glass-ionomer cements with the mineral phase of the tooth are the most important in developing strong bonds, at least in the shorter term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: This paper reports a study of the water loss behaviour of two commercial glass-ionomer cements coated with varnishes. METHODS: For each cement (Fuji IX Fast or Chemflex), specimens (6mmdiameterx2mm depth) were prepared and cured for 10min at 37 degrees C. They were exposed to a desiccating environment over H(2)SO(4) either uncoated or coated with the appropriate varnish (Fuji Varnish, a solvent-based lacquer, or Fuji Coat, a light-cured varnish). Four specimens were prepared for each material. They were weighed at hourly intervals for 6h, daily for up to 5 days, then weekly thereafter until equilibration. RESULTS: Unlike the uncoated specimens, water loss from varnished cements was not Fickian, but followed the form: mass loss=A/t+B, where t is time, A and B are constants specific to each cement/varnish combination. A varied from 1.22 to 1.30 (mean 1.26, standard deviation 0.04), whereas B varied from 1.54 to 2.09 (mean -1.83, standard deviation 0.29). At equilibrium, varnished specimens lost much less water than unvarnished ones (p>0.01) but there was no significant difference between the solvent-based and the light-cured varnishes. SIGNIFICANCE: Varnishes protect immature glass-ionomer cements from drying out by altering the mechanism of water loss. This slows the rate of drying but does not necessarily change the total amount of water retained. It confirms that, in clinical use, glass-ionomer restoratives should be varnished to allow them to mature satisfactorily.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water uptake and water loss behaviour in three different formulations of zinc oxy-chloride cement have been studied in detail. Specimens of each material were subjected to a high humidity atmosphere (93% RH) over saturated aqueous sodium sulfate, and a low humidity desiccating atmosphere over concentrated sulfuric acid. In high humidity, the cement formulated from the nominal 75% ZnCl2 solutions gained mass, eventually becoming too sticky to weigh further. The specimens at 25% and 50% ZnCl2 by contrast lost mass by a diffusion process, though by 1 week the 50% cement had stated to gain mass and was also too sticky to weigh. In low humidity, all three cements lost mass, again by a diffusion process. Both water gain and water loss followed Fick's law for a considerable time. In the case of water loss under desiccating conditions, this corresponded to values of Mt/MĄ well above 0.5. However, plots did not go through the origin, showing that there was an induction period before true diffusion began. Diffusion coefficients varied from 1.56 x 10-5 (75% ZnCl2) to 2.75 x 10-5 cm2/s (50% ZnCl2), and appeared to be influenced not simply by composition. The drying of the 25% and 50% ZnCl2 cements in high humidity conditions occurred at a much lower rate, with a value of D of 2.5 x 10-8 cm2/s for the 25% ZnCl2 cement. This cement was found to equilibrate slowly, but total water loss did not differ significantly from that of the cements stored under desiccating conditions. Equilibration times for water loss in desiccating conditions were of the order of 2-4 hours, depending on ZnCl2 content; equilibrium water losses were respectively 28.8 [25% ZnCl2], 16.2 [50%] and 12.4 [75%] which followed the order of ZnCl2 content. It is concluded that the water transport processes are strongly influenced by the ZnCl2 content of the cement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heavy metal-bearing waste usually needs solidification/stabilization (s/s) prior to landfill to lower the leaching rate. Cement is the most adaptable binder currently available for the immobilisation of heavy metals. The selection of cements and operating parameters depends upon an understanding of chemistry of the system. This paper discusses interactions of heavy metals and cement phases in the solidification/stabilisation process. It provides a clarification of heavy metal effects on cement hydration. According to the decomposition rate of minerals, heavy metals accelerate the hydration of tricalcium silicate (C3S) and Portland cement, although they retard the precipitation of portlandite due to the reduction of pH resulted from hydrolyses of heavy metal ions. The chemical mechanism relevant to the accelerating effect of heavy metals is considered to be H+ attacks on cement phases and the precipitation of calcium heavy metal double hydroxides, which consumes calcium ions and then promotes the decomposition Of C3S. In this work, molecular models of calcium silicate hydrate gel are presented based on the examination of Si-29 solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). This paper also reviews immobilisation mechanisms of heavy metals in hydrated cement matrices, focusing on the sorption, precipitation and chemical incorporation of cement hydration products. It is concluded that further research oil the phase development during cement hydration in the presence of heavy metals and thermodynamic modelling is needed to improve effectiveness of cement-based s/s and extend this waste management technique. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In response to a burgeoning interest in the prospective clinical applications of hydraulic calcium (alumino)silicate cements, the in vitro bioactivity and dissolution characteristics of a white Portland cement have been investigated. The formation of an apatite layer within 6 h of contact with simulated body fluid was attributed to the rapid dissolution of calcium hydroxide from the cement matrix and to the abundance of pre-existing Si-OH nucleation sites presented by the calcium silicate hydrate phase. A simple kinetic model has been used to describe the rate of apatite formation and an apparent pseudo-second-order rate constant for the removal of HPO42- ions frorn solultion has been calculated (k(2) = 5.8 x 10(-4) g mg(-1)). Aspects of the chemistry of hydraulic cements are also discussed with respect to their potential use in the remedial treatment of living tissue. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 90A: 166-174, 2009

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The corrosion of steel reinforcement bars in reinforced concrete structures exposed to severe marine environments usually is attributed to the aggressive nature of chloride ions. In some cases in practice corrosion has been observed to commence already within a few years of exposure even with considerable concrete cover to the reinforcement and apparently high quality concretes. However, there are a number of other cases in practice for which corrosion initiation took much longer, even in cases with quite modest concrete cover and modest concrete quality. Many of these structures show satisfactory long-term structural performance, despite having high levels of localized chloride concentrations at the reinforcement. This disparity was noted already more than 50 years ago, but appears still not fully explained. This paper presents a systematic overview of cases reported in the engineering and corrosion literature and considers possible reasons for these differences. Consistent with observations by others, the data show that concretes made from blast furnace cements have better corrosion durability properties. The data also strongly suggest that concretes made with limestone or non-reactive dolomite aggregates or sufficiently high levels of other forms of calcium carbonates have favourable reinforcement corrosion properties. Both corrosion initiation and the onset of significant damage are delayed. Some possible reasons for this are explored briefly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite resins and glass-ionomer cements were introduced to dentistry in the 1960s and 1970s, respectively. Since then, there has been a series of modifications to both materials as well as the development other groups claiming intermediate characteristics between the two. The result is a confusion of materials leading to selection problems. While both materials are tooth-colored, there is a considerable difference in their properties, and it is important that each is used in the appropriate situation. Composite resin materials are esthetic and now show acceptable physical strength and wear resistance. However, they are hydrophobic, and therefore more difficult to handle in the oral environment, and cannot support ion migration. Also, the problems of gaining long-term adhesion to dentin have yet to be overcome. On the other hand, glass ionomers are water-based and therefore have the potential for ion migration, both inward and outward from the restoration, leading to a number of advantages. However, they lack the physical properties required for use in load-bearing areas. A logical classification designed to differentiate the materials was first published by McLean et al in 1994, but in the last 15 years, both types of material have undergone further research and modification. This paper is designed to bring the classification up to date so that the operator can make a suitable, evidence-based, choice when selecting a material for any given situation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: The aim of this study was to investigate the adaptation of different types of restorations towards deciduous and young permanent teeth. Materials and Methods: Class V cavities were prepared in deciduous and young permanent teeth and filled with different materials (a conventional glass-ionomer, a resin-modified glass-ionomer, a poly-acid-modified composite resin and a conventional composite resin). Specimens were aged in artificial saliva for 1, 6, 12 and 18 months, then examined by SEM. Results: The composite resin and the polyacid-modified composite had better marginal adaptation than the glass-ionomers,though microcracks developed in the enamel of the tooth. The glass-ionomers showed inferior marginal quality and durability, but no microcracking of the enamel. The margins of the resin-modified glass-ionomer were slightly superior to the conventional glass-ionomer. Conditioning improved the adaptation of the composite resin, but the type of tooth made little or no difference to the performance of the restorative material. All materials were associated with the formation of crystals in the gaps between the filling and the tooth; the quantity and shape of these crystals varied with the material. Conclusions: Resin-based materials are generally better at forming sound, durable margins in deciduous and young permanent teeth than cements, but are associated with microcracks in the enamel. All fluoride-releasing materials give rise to crystalline deposits.