2 resultados para LIVER SAMPLES
em Greenwich Academic Literature Archive - UK
Resumo:
Purpose – A small size cold crucible offers possibilities for melting various electrically conducting materials with a minimal wall contact. Such small samples can be used for express contamination analysis, preparing limited amounts of reactive alloys or experimental material analyses. Aims to present a model to follow the melting process. Design/methodology/approach – The presents a numerical model in which different types of axisymmetric coil configurations are analysed. Findings – The presented numerical model permits dynamically to follow the melting process, the high-frequency magnetic field distribution change, the free surface and the melting front evolution, and the associated turbulent fluid dynamics. The partially solidified skin on the contact to the cold crucible walls and bottom is dynamically predicted. The segmented crucible shape is either cylindrical, hemispherical or arbitrary shaped. Originality/value – The model presented within the paper permits the analysis of melting times, melt shapes, electrical efficiency and particle tracks.
Resumo:
Major and trace elemental composition provides a powerful basis for forensic comparison of soils, sediments and rocks. However, it is important that the potential 'errors' associated with the procedures are fully understood and quantified, and that standard protocols are applied for sample preparation and analysis. This paper describes such a standard procedure and reports results both for instrumental measurement precision (repeatability) and overall 'method' precision (reproducibility). Results obtained both for certified reference materials and example soils show that the instrumental measurement precision (defined by the coefficient of variation, CV) for most elements is better than 2-3%. When different solutions were prepared from the same sample powder, and from different sub-sample powders prepared from the same parent sample, the CV increased to c. 5-6% for many elements. The largest variation was found in results for certified reference materials generated from 23 instrument runs over an 18 month period (mean CV=c. 11%). Some elements were more variable than others. W was found to be the most variable and the elements V, Cr, Co, Cu, Ni and Pb also showed higher than average variability. SiO2, CaO, Al2O3 and Fe2O3, Rb, Sr, La, Ce, Nd and Sm generally showed lower than average variability, and therefore provided the most reliable basis for inter-sample comparison. It is recommended that, whenever possible, samples relating to the same investigation should be analysed in the same sample run, or at least sequential runs.