6 resultados para Kirchhoff plate equation
em Greenwich Academic Literature Archive - UK
Resumo:
A novel multiscale model of brittle crack propagation in an Ag plate with macroscopic dimensions has been developed. The model represents crack propagation as stochastic drift-diffusion motion of the crack tip atom through the material, and couples the dynamics across three different length scales. It integrates the nanomechanics of bond rupture at the crack tip with the displacement and stress field equations of continuum based fracture theories. The finite element method is employed to obtain the continuum based displacement and stress fields over the macroscopic plate, and these are then used to drive the crack tip forward at the atomic level using the molecular dynamics simulation method based on many-body interatomic potentials. The linkage from the nanoscopic scale back to the macroscopic scale is established via the Ito stochastic calculus, the stochastic differential equation of which advances the tip to a new position on the macroscopic scale using the crack velocity and diffusion constant obtained on the nanoscale. Well known crack characteristics, such as the roughening transitions of the crack surfaces, crack velocity oscillations, as well as the macroscopic crack trajectories, are obtained.
Resumo:
A new multi-scale model of brittle fracture growth in an Ag plate with macroscopic dimensions is proposed in which the crack propagation is identified with the stochastic drift-diffusion motion of the crack-tip atom through the material. The model couples molecular dynamics simulations, based on many-body interatomic potentials, with the continuum-based theories of fracture mechanics. The Ito stochastic differential equation is used to advance the tip position on a macroscopic scale before each nano-scale simulation is performed. Well-known crack characteristics, such as the roughening transitions of the crack surfaces, as well as the macroscopic crack trajectories are obtained.
Resumo:
In fluid mechanics, it is well accepted that the Euler equation is one of the reduced forms of the Navier-Stokes equation by truncating the viscous effect. There are other truncation techniques currently being used in order to truncate the Navier-Stokes equation to a reduced form. This paper describes one such technique, suitable for adaptive domain decomposition methods for the solution of viscous flow problems. The physical domain of a viscous flow problem is partitioned into viscous and inviscid subdomains without overlapping regions, and the technique is embedded into a finite volume method. Some numerical results are provided for a flat plate and the NACA0012 aerofoil. Issues related to distributed computing are discussed.
Resumo:
A defect equation for the coupling of nonlinear subproblems defined in nonoverlapped subdomains arise in domain decomposition methods is presented. Numerical solutions of defect equations by means of quasi-Newton methods are considered.
Resumo:
A novel multi-scale seamless model of brittle-crack propagation is proposed and applied to the simulation of fracture growth in a two-dimensional Ag plate with macroscopic dimensions. The model represents the crack propagation at the macroscopic scale as the drift-diffusion motion of the crack tip alone. The diffusive motion is associated with the crack-tip coordinates in the position space, and reflects the oscillations observed in the crack velocity following its critical value. The model couples the crack dynamics at the macroscales and nanoscales via an intermediate mesoscale continuum. The finite-element method is employed to make the transition from the macroscale to the nanoscale by computing the continuum-based displacements of the atoms at the boundary of an atomic lattice embedded within the plate and surrounding the tip. Molecular dynamics (MD) simulation then drives the crack tip forward, producing the tip critical velocity and its diffusion constant. These are then used in the Ito stochastic calculus to make the reverse transition from the nanoscale back to the macroscale. The MD-level modelling is based on the use of a many-body potential. The model successfully reproduces the crack-velocity oscillations, roughening transitions of the crack surfaces, as well as the macroscopic crack trajectory. The implications for a 3-D modelling are discussed.
Resumo:
A parallel time-domain algorithm is described for the time-dependent nonlinear Black-Scholes equation, which may be used to build financial analysis tools to help traders making rapid and systematic evaluation of buy/sell contracts. The algorithm is particularly suitable for problems that do not require fine details at each intermediate time step, and hence the method applies well for the present problem.