4 resultados para Kamerun, Dezentralisierung, demokratische Transition Afrikas, lokalpolitische Arena, Kommunalpolitik, Wahlen in Afrika
em Greenwich Academic Literature Archive - UK
Resumo:
Whereas common infectious and parasitic diseases such as malaria and the HIV/AIDS pandemic remain major unresolved health problems in many developing countries, emerging non-communicable diseases relating to diet and lifestyle have been increasing over the last two decades, thus creating a double burden of disease and impacting negatively on already over-stretched health services in these countries. Prevalence rates for type 2 diabetes mellitus and CVD in sub-Saharan Africa have seen a 10-fold increase in the last 20 years. In the Arab Gulf current prevalence rates are between 25 and 35% for the adult population, whilst evidence of the metabolic syndrome is emerging in children and adolescents. The present review focuses on the concept of the epidemiological and nutritional transition. It looks at historical trends in socio-economic status and lifestyle and trends in nutrition-related non-communicable diseases over the last two decades, particularly in developing countries with rising income levels, as well as the other extreme of poverty, chronic hunger and coping strategies and metabolic adaptations in fetal life that predispose to non-communicable disease risk in later life. The role of preventable environmental risk factors for obesity and the metabolic syndrome in developing countries is emphasized and also these challenges are related to meeting the millennium development goals. The possible implications of these changing trends for human and economic development in poorly-resourced healthcare settings and the implications for nutrition training are also discussed.
Resumo:
Molecular dynamics has been employed to model the fracture of a twodimensional triangular atomic lattice. The N-body Sutton-Chen potential developed for fcc metals and its extended version (Rafii-Tabar and Sutton) for fcc random binary alloys were used for the interatomic interactions. It is shown that at low temperatures cleavage fractures can occur in both an elemental metal and an alloy. At elevated temperatures the nucleation of dislocations is shown to cause a brittle-to-ductile transition. For the brittle crack propagation in the elemental metal, crack propagation speeds have been computed for different stress rates, and a crack instability found to exist as the speed reaches a critical value of about 32% of the Rayleigh wave speed. For the random alloy, we find that the dislocation movement can be affected by the distorted lattice.
Resumo:
Molecular dynamics has been employed to model the fracture of a two dimensional triangular atomic lattice. The N-body Sutton-Chen potential developed for fcc metals and its extended version (Rafii-Tabar and Sutton) for fcc random binary alloys were used for the interatomic interactions. It is shown that at low temperatures cleavage fractures can occur in both an elemental metal and an alloy. At elevated temperatures the nucleation of dislocations is shown to cause a brittle-to-ductile transition. For the brittle crack propagation in the elemental metal, crack propagation speeds have been computed for different stress rates, and a crack instability found to exist as the speed reaches a critical value of about 32% of the Rayleigh wave speed. For the random alloy, we find that the dislocation movement can be affected by the distorted lattice.
Resumo:
Using thermosetting epoxy based conductive adhesive films for the flip chip interconnect possess a great deal of attractions to the electronics manufacturing industries due to the ever increasing demands for miniaturized electronic products. Adhesive manufacturers have taken many attempts over the last decade to produce a number of types of adhesives and the coupled anisotropic conductive-nonconductive adhesive film is one of them. The successful formation of the flip chip interconnection using this particular type of adhesive depends on, among factors, how the physical properties of the adhesive changes during the bonding process. Experimental measurements of the temperature in the adhesive have revealed that the temperature becomes very close to the required maximum bonding temperature within the first 1s of the bonding time. The higher the bonding temperature the faster the ramp up of temperature is. A dynamic mechanical analysis (DMA) has been carried out to investigate the nature of the changes of the physical properties of the coupled anisotropic conductive-nonconductive adhesive film for a range of bonding parameters. Adhesive samples that are pre-cured at 170, 190 and 210°C for 3, 5 and 10s have been analyzed using a DMA instrument. The results have revealed that the glass transition temperature of this type of adhesive increases with the increase in the bonding time for the bonding temperatures that have been used in this work. For the curing time of 3 and 5s, the maximum glass transition temperature increases with the increase in the bonding temperature, but for the curing time of 10s the maximum glass transition temperature has been observed in the sample which is cured at 190°C. Based on these results it has been concluded that the optimal bonding temperature and time for this kind of adhesive are 190°C and 10s, respectively.