7 resultados para Jet shapes
em Greenwich Academic Literature Archive - UK
Resumo:
In this paper, we discuss the problem of maintenance of a CBR system for retrieval of rotationally symmetric shapes. The special feature of this system is that similarity is derived primarily from graph matching algorithms. The special problem of such a system is that it does not operate on search indices that may be derived from single cases and then used for visualisation and principle component analyses. Rather, the system is built on a similarity metric defined directly over pairs of cases. The problems of efficiency, consistency, redundancy, completeness and correctness are discussed for such a system. Performance measures for the CBR system are given, and the results for trials of the system are presented. The competence of the current case-base is discussed, with reference to a representation of cases as points in an n-dimensional feature space, and a Gramian visualisation. A refinement of the case base is performed as a result of the competence analysis and the performance of the case-base before and after refinement is compared.
Resumo:
We consider the problem of finding the heat distribution and the shape of the liquid fraction during laser welding of a thick steel plate using the finite volume CFD package PHYSICA. Since the shape of the keyhole is not known in advance, the following two-step approach to handling this problem has been employed. In the first stage, we determine the geometry of the keyhole for the steady-state case and form an appropriate mesh that includes both the workpiece and the keyhole. In the second stage, we impose the boundary conditions by assigning temperature to the walls of the keyhole and find the heat distribution and the shape of the liquid fraction for a given welding speed and material properties. We construct a fairly accurate approximation of the keyhole as a sequence of include sliced cones. A formula for finding the initial radius of the keyhole is derived by determining the radius of the vaporisation isotherm for the line heat source. We report on the results of a series of computational experiments for various heat input values and welding velocities.
Resumo:
This paper describes research into retrieval based on 3-dimensional shapes for use in the metal casting industry. The purpose of the system is to advise a casting engineer on the design aspects of a new casting by reference to similar castings which have been prototyped and tested in the past. The key aspects of the system are the orientation of the shape within the mould, the positions of feeders and chills, and particular advice concerning special problems and solutions, and possible redesign. The main focus of this research is the effectiveness of similarity measures based on 3-dimensional shapes. The approach adopted here is to construct similarity measures based on a graphical representation deriving from a shape decomposition used extensively by experienced casting design engineers. The paper explains the graphical representation and discusses similarity measures based on it. Performance measures for the CBR system are given, and the results for trials of the system are presented. The competence of the current case-base is discussed, with reference to a representation of cases as points in an n-dimensional feature space, and its principal components visualization. A refinement of the case base is performed as a result of the competence analysis and the performance of the case-base before and after refinement is compared.
Resumo:
The use of an innovative jet impingement cooling system in a power electronics application is investigated using numerical analysis. The jet impingement system, outlined by Skuriat et al, consists of a series of cells each containing an array of holes. Cooling fluid is forced through the device, forming an array of impingement jets. The jets are arranged in a manner, which induces a high degree of mixing in the interface boundary layer. This increase in turbulent mixing is intended to induce higher Nusselt numbers and effective heat transfer coefficients. Enhanced cooling efficiency enables the power electronics module to operate at a lower temperature, greatly enhancing long-term reliability. The results obtained through numerical modelling deviates markedly from the experimentally derived data. The disparity is most likely due to the turbulence model selected and further analysis is required, involving evaluation of more advanced turbulence models.
Resumo:
Spherical silicon solar cells are expected to serve as a technology to reduce silicon usage of photovoltaic (PV) power systems[1, 2, 3]. In order to establish the spherical silicon solar cell, a manufacturing method of uniformly sized silicon particles of 1mm in diameter is required. However, it is difficult to mass-produce the mono-sized silicon particles at low cost by existent processes now. We proposed a new method to generate liquid metal droplets uniformly by applying electromagnetic pinch force to a liquid metal jet[4]. The electromagnetic force was intermittently applied to the liquid metal jet issued from a nozzle in order to fluctuate the surface of the jet. As the fluctuation grew, the liquid jet was broken up into small droplets according to a frequency of the intermittent electromagnetic force. Firstly, a preliminary experiment was carried out. A single pulse current was applied instantaneously to a single turn coil around a molten gallium jet. It was confirmed that the jet could be split up by pinch force generated by the current. And then, electromagnetic pinch force was applied intermittently to the jet. It was found that the jet was broken up into mono-sized droplets in the case of a force frequency was equal to a critical frequency[5], which corresponds to a natural disturbance wave length of the jet. Numerical simulations of the droplet generation from the liquid jet were then carried out, which consisted of an electromagnetic analysis and a fluid flow calculation with a free surface of the jet. The simulation results were compared with the experiments and the agreement between the two was quite good.
Resumo:
This is about politics and protest, or rather about a politics of protest, and of rebellion. But it is also about creativity and the way in which theory and practice combine within the context of the ‘productive/creative’ process. In this case the combination is explicit and can be traced along a clear trajectory. The following will set out the way in which the accompanying piece of music – a cover of the 1969 protest song Leaving on a Jet Plane by Peter, Paul & Mary - came into being. In doing so it will make reference to a number of theoretical ideas/concepts that fed into the productive process and/or appeared relevant postproduction. It will draw on various aspects of thought from Heidegger (Standing reserve, Enframing and Authenticity), Camus (The Rebel), Foucault (Luminosity), and Deleuze (Immanence, Difference and Repetition and The Fold). [From the Author].
Resumo:
Abstract not available