3 resultados para Jean-Pierre Masse

em Greenwich Academic Literature Archive - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Induction Skull Melting (ISM) is a technique for heating, melting, mixing and, possibly, evaporating reactive liquid metals at high temperatures with a minimum contact at solid walls. The presented numerical modelling involves the complete time dependent process analysis based on the coupled electromagnetic, temperature and turbulent velocity fields during the melting and liquid shape changes. The simulation model is validated against measurements of liquid metal height, temperature and heat losses in a commercial size ISM furnace. The observed typical limiting temperature plateau for increasing input electrical power is explained by the turbulent convective heat losses. Various methods to increase the superheat within the liquid melt, the process energy efficiency and stability are proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vacuum Arc Remelting (VAR) is the accepted method for producing homogeneous, fine microstructures that are free of inclusions required for rotating grade applications. However, as ingot sizes are increasing INCONEL 718 becomes increasingly susceptible to defects such as freckles, tree rings, and white spots increases for large diameter billets. Therefore, predictive models of these defects are required to allow optimization of process parameters. In this paper, a multiscale and multi-physics model is presented to predict the development of microstructures in the VAR ingot during solidification. At the microscale, a combined stochastic nucleation approach and finite difference solution of the solute diffusion is applied in the semi-solid zone of the VAR ingot. The micromodel is coupled with a solution of the macroscale heat transfer, fluid flow and electromagnetism in the VAR process through the temperature, pressure and fluid flow fields. The main objective of this study is to achieve a better understanding of the formation of the defects in VAR by quantifying the influence of VAR processing parameters on grain nucleation and dendrite growth. In particular, the effect of different ingot growth velocities on the microstructure formation was investigated. It was found that reducing the velocity produces significantly more coarse grains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

TiAl castings are prone to various defects including bubbles entrained during the turbulent filling of moulds. The present research has exploited the principles of the Durville tilt casting technique to develop a novel process in which the Induction Skull Melting (ISM) of TiAl alloys in a vacuum chamber has been combined with controlled tilt pouring to achieve the tranquil transfer of the metal into a hot ceramic shell mould. Practical casting equipment has been developed to evaluate the feasibility of this process in parallel with the development of novel software to simulate and optimize it. The PHYSICA CFD code was used to simulate the filling, heat transfer and solidification during tilt pouring using a number of free surface modelling techniques, including the novel Counter Diffusion Method (CDM). In view of the limited superheat, particular attention was paid to the mould design to minimize heat loss and gas entrainment caused by interaction between the counter-flowing metal and gas streams. The model has been validated against real-time X-ray movies of the tilt casting of aluminium and against TiAl blade castings. Modelling has contributed to designing a mould to promote progressive filling of the casting and has led to the use of a parabolic tilting cycle to balance the competing requirements for rapid filling to minimize the loss of superheat and slow filling minimize the turbulence-induced defects.