3 resultados para Ion exchange resins.
em Greenwich Academic Literature Archive - UK
Resumo:
11 Å tobermorite, Ca5Si6O16(OH)2 · 4H2O, is a layer lattice ion exchange mineral whose potential as a carrier for Ag+ and Zn2+ ions in antimicrobial, bioactive formulations has not yet been explored. In view of this, the in vitro bioactivity of Ag+- and Zn2+-exchanged 11 Å tobermorites and their bactericidal action against S. aureus and P.aeruginosa are reported. The in vitro bioactivity of the synthetic unsubstituted tobermorite phase was confirmed by the formation of bone-like hydroxycarbonate apatite (HCA) on its surface within 48 h of contact with simulated body fluid. The substitution of labile Ag+ ions into the tobermorite lattice delayed the onset of HCA-formation to 72 h; whereas, the Zn2+-substituted phase failed to elicit an HCA-layer within 14 days. Both Ag+- and Zn2+-exchanged tobermorite phases were found to exhibit marked antimicrobial action against S. aureus and P.aeruginosa, two common pathogens in biomaterial-centred infections.
Resumo:
Ag+- and Zn2+-exchanged zeolites zeolites and clays have been used as coatings and in composites to confer broad-spectrum antimicrobial properties on a range of technical and biomedical materials. 11 angstrom tobermorite is a bioactive layer lattice ion exchanger whose potential as a carrier for Ag+ and Zn2+ ions in antimicrobial formulations has not yet been explored. In view of this, batch Ag+- and Zn2+-exchange kinetics of two structurally distinct synthetic 11 angstrom tobermorites and their subsequent bactericidal action against Staphylococcus aureus and Pseudomonas aeruginosa are reported. During the exchange reactions, Ag+ ions were found to replace labile interlayer cations; whereas, Zn2+ ions also displaced structural Ca2+ ions from the tobermorite lattice. In spite of these different mechanisms, a simple pseudo-second-order model provided a suitable description of both exchange processes (R-2 >= 0.996). The Ag+- and Zn2+-exchanged tobermorite phases exhibited marked bacteriostatic effects against both bacteria, and accordingly, their potential for use as antimicrobial materials for in situ bone tissue regeneration is discussed. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
OBJECTIVE: The aim of this study was to investigate how the release of fluoride from two compomers and a fluoridated composite resin was affected by exposure to KF solution. MATERIAL AND METHODS: Two compomers (Dyract AP and Compoglass F) and one fluoridated composite (Wave) were prepared as discs (6 mm diameter and 2 mm thick), curing with a standard dental lamp. They were then stored in either water or 0.5% KF for 1 week, followed by placement in water for periods of 1 week up to 5 weeks total. Fluoride was determined with and without TISAB (to allow complexed and decomplexed fluoride to be determined), and other ion release (Na, Ca, Al, Si, P) was determined by ICP-OES. RESULTS: Specimens were found not to take up fluoride from 100 ppm KF solution in 24 h, but to release additional fluoride when stored for up to five weeks. Compomers released more fluoride cumulatively following exposure to KF solution (p<0.001), all of which was decomplexed, though initial (1 week) values were not statistically significant for Dyract AP. Other ions showed no variations in release over 1 week, regardless of whether the specimens were exposed to KF. Unlike the compomers, Wave showed no change in fluoride release as a result of exposure to KF. CONCLUSIONS: Compomers are affected by KF solution, and release more fluoride (but not other ions) after exposure than if stored in water.