6 resultados para Intelligent systems. Pipeline networks. Fuzzy logic

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose a method for interpolation over a set of retrieved cases in the adaptation phase of the case-based reasoning cycle. The method has two advantages over traditional systems: the first is that it can predict “new” instances, not yet present in the case base; the second is that it can predict solutions not present in the retrieval set. The method is a generalisation of Shepard’s Interpolation method, formulated as the minimisation of an error function defined in terms of distance metrics in the solution and problem spaces. We term the retrieval algorithm the Generalised Shepard Nearest Neighbour (GSNN) method. A novel aspect of GSNN is that it provides a general method for interpolation over nominal solution domains. The method is illustrated in the paper with reference to the Irises classification problem. It is evaluated with reference to a simulated nominal value test problem, and to a benchmark case base from the travel domain. The algorithm is shown to out-perform conventional nearest neighbour methods on these problems. Finally, GSNN is shown to improve in efficiency when used in conjunction with a diverse retrieval algorithm.