10 resultados para Intakes (Hydraulic engineering)

em Greenwich Academic Literature Archive - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes a project aimed at making Computational Fluid Dynamics (CFD)- based fire simulation accessible to members of the fire safety engineering community. Over the past few years, the practice of CFD-based fire simulation has begun the transition from the confines of the research laboratory to the desk of the fire safety engineer. To a certain extent, this move has been driven by the demands of performance based building codes. However, while CFD modeling has many benefits over other forms of fire simulation, it requires a great deal of expertise on the user’s part to obtain reasonable simulation results. The project described in this paper, SMARTFIRE, aims to relieve some of this dependence on expertise so that users are less concerned with the details of CFD analysis and can concentrate on results. This aim is achieved by the use of an expert system component as part of the software suite which takes some of the expertise burden away from the user. SMARTFIRE also makes use of the latest developments in CFD technology in order to make the CFD analysis more efficient. This paper describes design considerations of the SMARTFIRE software, emphasizing its open architecture, CFD engine and knowledge-based systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerical predictions produced by the SMARTFIRE fire field model are compared with experimental data. The predictions consist of gas temperatures at several locations within the compartment over a 60 min period. The test fire, produced by a burning wood crib attained a maximum heat release rate of approximately 11MW. The fire is intended to represent a nonspreading fire (i.e. single fuel source) in a moderately sized ventilated room. The experimental data formed part of the CIB Round Robin test series. Two simulations are produced, one involving a relatively coarse mesh and the other with a finer mesh. While the SMARTFIRE simulations made use of a simple volumetric heat release rate model, both simulations were found capable of reproducing the overall qualitative results. Both simulations tended to overpredict the measured temperatures. However, the finer mesh simulation was better able to reproduce the qualitative features of the experimental data. The maximum recorded experimental temperature (12141C after 39 min) was over-predicted in the fine mesh simulation by 12%. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problems encountered when using traditional rectangular pulse hierarchical point processmodels for fine temporal resolution and the growing number of available tip-time records suggest that rainfall increments from tipping-bucket gauges be modelled directly. Poisson processes are used with an arrival rate modulated by a Markov chain in Continuous time. The paper shows how, by using two or three states for this chain, much of the structure of the rainfall intensity distribution and the wet/dry sequences can be represented for time-scales as small as 5 minutes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trend analysis is widely used for detecting changes in hydrological data. Parametric methods for this employ pre-specified models and associated tests to assess significance, whereas non-parametric methods generally apply rank tests to the data. Neither approach is suitable for exploratory analysis, because parametric models impose a particular, perhaps unsuitable, form of trend, while testing may confirm that trend is present but does not describe its form. This paper describes semi-parametric approaches to trend analysis using local likelihood fitting of annual maximum and partial duration series and illustrates their application to the exploratory analysis of changes in extremes in sea level and river flow data. Bootstrap methods are used to quantify the variability of estimates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fire and evacuation models with features such as the ability to realistically simulate the spread of heat and smoke and the human response to fire as well as the capability to model human performance in heeled orientations linked to a virtual reality environment that produces realistic visualisation of the modelled scenarios are now available and can be used to aid the engineer in assessing ship design and procedures. This paper describes the maritimeEXODUS ship evacuation and the SMARTFIRE fire simulation model and provides an example application demonstrating the use of the models used in pperforming fire and evacuation analysis for a large passenger ship partially based on the requirements of MSC circular 1033.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When designing a new passenger ship or modifying an existing design, how do we ensure that the proposed design and crew emergency procedures are safe from an evacuation resulting from fire or other incident? In the wake of major maritime disasters such as the Scandinavian Star, Herald of Free Enterprise, Estonia and in light of the growth in the numbers of high density, high-speed ferries and large capacity cruise ships, issues concerning the evacuation of passengers and crew at sea are receiving renewed interest. Fire and evacuation models with features such as the ability to realistically simulate the spread of fire and fire suppression systems and the human response to fire as well as the capability to model human performance in heeled orientations linked to a virtual reality environment that produces realistic visualisations of the modelled scenarios are now available and can be used to aid the engineer in assessing ship design and procedures. This paper describes the maritimeEXODUS ship evacuation and the SMARTFIRE fire simulation model and provides an example application demonstrating the use of the models in performing fire and evacuation analysis for a large passenger ship partially based, but exceeding the requirements of MSC circular 1033.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When designing a new passenger ship or modifying an existing design, how do we ensure that the proposed design and crew emergency procedures are safe from an evacuation resulting from fire or other incident? In the wake of major maritime disasters such as the Scandinavian Star, Herald of Free Enterprise, Estonia and in light of the growth in the numbers of high density, high-speed ferries and large capacity cruise ships, issues concerning the evacuation of passengers and crew at sea are receiving renewed interest. Fire and evacuation models with features such as the ability to realistically simulate the spread of fire and fire suppression systems and the human response to fire as well as the capability to model human performance in heeled orientations linked to a virtual reality environment that produces realistic visualisations of the modelled scenarios are now available and can be used to aid the engineer in assessing ship design and procedures. This paper describes the maritimeEXODUS ship evacuation and the SMARTFIRE fire simulation model and provides an example application demonstrating the use of the models in performing fire and evacuation analysis for a large passenger ship partially based on the requirements of MSC circular 1033. The fire simulations include the action of a water mist system.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The International Maritime Organisation (IMO) has adopted the use of computer simulation to assist in the assessment of the assembly time for passenger ships. A key parameter required for this analysis and specified as part of the IMO guidelines is the passenger response time distribution. It is demonstrated in this paper that the IMO specified response time distribution assumes an unrealistic mathematical form. This unrealistic mathematical form can lead to serious congestion issues being overlooked in the evacuation analysis and lead to incorrect conclusions concerning the suitability of vessel design. In light of these results, it is vital that IMO undertake research to generate passenger response time data suitable for use in evacuation analysis of passenger ships. Until this type of data becomes readily available, it is strongly recommended that rather than continuing to use the artificial and unrepresentative form of the response time distribution, IMO should adopt plausible and more realistic response time data derived from land based applications. © 2005: Royal Institution of Naval Architects.