2 resultados para Instituto Católico de Bernardo Durán, México

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a framework for representing versatile temporal relationships between events and their effects. The framework is based on a simple time model which characterizes each time element as a subset of the set of real numbers and allows expression of both absolute time values and relative temporal relations. The formalism presented here formally specifies the so-called most general temporal constraint (GTC), which guarantees the common-sense assertion that “the beginning of the effect cannot precede the beginning of the cause”. It is shown that there are in fact 8 possible causal relationships which satisfy GTC, including cases where, on the one hand, effects start simultaneously with, during, immediately after, or some time after their causes, and on the other hand, events end before, simultaneously with, or after their causes. The causal relationships characterized in this paper are versatile enough to subsume those representatives in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we shall critically examine a special class of graph matching algorithms that follow the approach of node-similarity measurement. A high-level algorithm framework, namely node-similarity graph matching framework (NSGM framework), is proposed, from which, many existing graph matching algorithms can be subsumed, including the eigen-decomposition method of Umeyama, the polynomial-transformation method of Almohamad, the hubs and authorities method of Kleinberg, and the kronecker product successive projection methods of Wyk, etc. In addition, improved algorithms can be developed from the NSGM framework with respects to the corresponding results in graph theory. As the observation, it is pointed out that, in general, any algorithm which can be subsumed from NSGM framework fails to work well for graphs with non-trivial auto-isomorphism structure.