4 resultados para In-Drilling Alignment

em Greenwich Academic Literature Archive - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Unstructured mesh codes for modelling continuum physics phenomena have evolved to provide the facility to model complex interacting systems. Parallelisation of such codes using single Program Multi Data (SPMD) domain decomposition techniques implemented with message passing has been demonstrated to provide high parallel efficiency, scalability to large numbers of processors P and portability across a wide range of parallel platforms. High efficiency, especially for large P requires that load balance is achieved in each parallel loop. For a code in which loops span a variety of mesh entity types, for example, elements, faces and vertices, some compromise is required between load balance for each entity type and the quantity of inter-processor communication required to satisfy data dependence between processors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Of key importance to oil and gas companies is the size distribution of fields in the areas that they are drilling. Recent arguments suggest that there are many more fields yet to be discovered in mature provinces than had previously been thought because the underlying distribution is monotonic not peaked. According to this view the peaked nature of the distribution for discovered fields reflects not the underlying distribution but the effect of economic truncation. This paper contributes to the discussion by analysing up-to-date exploration and discovery data for two mature provinces using the discovery-process model, based on sampling without replacement and implicitly including economic truncation effects. The maximum likelihood estimation involved generates a high-dimensional mixed-integer nonlinear optimization problem. A highly efficient solution strategy is tested, exploiting the separable structure and handling the integer constraints by treating the problem as a masked allocation problem in dynamic programming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-alignment of soldered electronic components such as flip-chips (FC), ball grid arrays (BGA) and optoelectronic devices during solder reflow is important as it ensures good alignment between components and substrates. Two uncoupled analytical models are presented which provide estimates of the dynamic time scales of both the chip and the solder in the self-alignment process. These predicted time scales can be used to decide whether a coupled dynamic analysis is required for the analysis of the chip motion. In this paper, we will show that for flip-chips, the alignment dynamics can be described accurately only when the chip motion is coupled with the solder motion because the two have similar time-scale values. To study this coupled phenomenon, a dynamic modeling method has been developed. The modeling results show that the uncoupled and coupled calculations result in significantly different predictions. The calculations based on the coupled model predict much faster rates of alignment than those predicted using the uncoupled approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented in this paper is part of the OPISA project. This is a collaborative research project between the University of Greenwich and Bookham Technology. This report describes some of the initial work undertaken towards the goal of investigating optoelectronic packaging where alignment issues between optical sources and fibers can arise as part of the fabrication process. The focus of this study is on charting the dynamics of laser spot weld formation. This paper introduces some of the initial simulation work that has been undertaken and presents a model describing a transient heat source applied from a laser pulse to weld a stainless steel sleeve and ferrule and the resulting weld formation