11 resultados para Implicit ODE
em Greenwich Academic Literature Archive - UK
Resumo:
The parallelization of an industrially important in-house computational fluid dynamics (CFD) code for calculating the airflow over complex aircraft configurations using the Euler or Navier–Stokes equations is presented. The code discussed is the flow solver module of the SAUNA CFD suite. This suite uses a novel grid system that may include block-structured hexahedral or pyramidal grids, unstructured tetrahedral grids or a hybrid combination of both. To assist in the rapid convergence to a solution, a number of convergence acceleration techniques are employed including implicit residual smoothing and a multigrid full approximation storage scheme (FAS). Key features of the parallelization approach are the use of domain decomposition and encapsulated message passing to enable the execution in parallel using a single programme multiple data (SPMD) paradigm. In the case where a hybrid grid is used, a unified grid partitioning scheme is employed to define the decomposition of the mesh. The parallel code has been tested using both structured and hybrid grids on a number of different distributed memory parallel systems and is now routinely used to perform industrial scale aeronautical simulations. Copyright © 2000 John Wiley & Sons, Ltd.
Resumo:
The paper describes an implicit finite difference approach to the pricing of American options on assets with a stochastic volatility. A multigrid procedure is described for the fast iterative solution of the discrete linear complementarity problems that result. The accuracy and performance of this approach is improved considerably by a strike-price related analytic transformation of asset prices and adaptive time-stepping.
Resumo:
The liquid metal flow in induction crucible models is known to be unstable, turbulent and difficult to predict in the regime of medium frequencies when the electromagnetic skin-layer is of considerable extent. We present long term turbulent flow measurements by a permanent magnet incorporated potential difference velocity probe in a cylindrical container filled with eutectic melt In-Ga-Sn. The parallel numerical simulation of the long time scale development of the turbulent average flow is presented. The numerical flow model uses an implicit pseudo-spectral code and k-w turbulence model, which was recently developed for the transitional flow modelling. The results compare reasonably to the experiment and demonstrate the time development of the turbulent flow field and the turbulence energy.
Resumo:
A three-dimensional finite volume, unstructured mesh (FV-UM) method for dynamic fluid–structure interaction (DFSI) is described. Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, wind response of buildings, flows in elastic pipes and blood vessels. It involves the coupling of fluid flow and structural mechanics, two fields that are conventionally modelled using two dissimilar methods, thus a single comprehensive computational model of both phenomena is a considerable challenge. Until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply. More recently, strategies for solving the full coupling between the fluid and solid mechanics behaviour have been developed. A key contribution has been made by Farhat et al. [Int. J. Numer. Meth. Fluids 21 (1995) 807] employing FV-UM methods for solving the Euler flow equations and a conventional finite element method for the elastic solid mechanics and the spring based mesh procedure of Batina [AIAA paper 0115, 1989] for mesh movement. In this paper, we describe an approach which broadly exploits the three field strategy described by Farhat for fluid flow, structural dynamics and mesh movement but, in the context of DFSI, contains a number of novel features: • a single mesh covering the entire domain, • a Navier–Stokes flow, • a single FV-UM discretisation approach for both the flow and solid mechanics procedures, • an implicit predictor–corrector version of the Newmark algorithm, • a single code embedding the whole strategy.
Resumo:
A three-dimensional finite volume, unstructured mesh (FV-UM) method for dynamic fluid–structure interaction (DFSI) is described. Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, wind response of buildings, flows in elastic pipes and blood vessels. It involves the coupling of fluid flow and structural mechanics, two fields that are conventionally modelled using two dissimilar methods, thus a single comprehensive computational model of both phenomena is a considerable challenge. Until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply. More recently, strategies for solving the full coupling between the fluid and solid mechanics behaviour have been developed. A key contribution has been made by Farhat et al. [Int. J. Numer. Meth. Fluids 21 (1995) 807] employing FV-UM methods for solving the Euler flow equations and a conventional finite element method for the elastic solid mechanics and the spring based mesh procedure of Batina [AIAA paper 0115, 1989] for mesh movement. In this paper, we describe an approach which broadly exploits the three field strategy described by Farhat for fluid flow, structural dynamics and mesh movement but, in the context of DFSI, contains a number of novel features: a single mesh covering the entire domain, a Navier–Stokes flow, a single FV-UM discretisation approach for both the flow and solid mechanics procedures, an implicit predictor–corrector version of the Newmark algorithm, a single code embedding the whole strategy.
Resumo:
A three dimensional finite volume, unstructured mesh method for dynamic fluid-structure interation is described. The broad approach is conventional in that the fluid and structure are solved sequentially. The pressure and viscous stresses from the flow algorithm provide load conditions for the solid algorithm, whilst at the fluid structure interface the deformed structure provides boundary condition from the structure to the fluid. The structure algorithm also provides the necessary mesh adaptation for the flow field, the effect of which is accounted for in the flow algorithm. The procedures described in this work have several novel features, namely: * a single mesh covering the entire domain. * a Navier Stokes flow. * a single FV-UM discretisation approach for both the flow and solid mechanics procedures. * an implicit predictor-corrector version of the Newmark algorithm. * a single code embedding the whole strategy. The procedure is illustrated for a three dimensional loaded cantilever in fluid flow.
Resumo:
A procedure for evaluating the dynamic structural response of elastic solid domains is presented. A prerequisite for the analysis of dynamic fluid–structure interaction is the use of a consistent set of finite volume (FV) methods on a single unstructured mesh. This paper describes a three-dimensional (3D) FV, vertex-based method for dynamic solid mechanics. A novel Newmark predictor–corrector implicit scheme was developed to provide time accurate solutions and the scheme was evaluated on a 3D cantilever problem. By employing a small amount of viscous damping, very accurate predictions of the fundamental natural frequency were obtained with respect to both the amplitude and period of oscillation. This scheme has been implemented into the multi-physics modelling software framework, PHYSICA, for later application to full dynamic fluid structure interaction.
Resumo:
A numerical scheme for coupling temperature and concentration fields in a general solidification model is presented. A key feature of this scheme is an explicit time stepping used in solving the governing thermal and solute conservation equations. This explicit approach results in a local point-by-point coupling scheme for the temperature and concentration and avoids the multi-level iteration required by implicit time stepping schemes. The proposed scheme is validated by predicting the concentration field in a benchmark solidification problem. Results compare well with an available similarity solution. The simplicity of the proposed explicit scheme allows for the incorporation of complex microscale models into a general solidification model. This is demonstrated by investigating the role of dendrite coarsening on the concentration field in the solidification benchmark problem.
Resumo:
This paper investigates the use of the acoustic emission (AE) monitoring technique for use in identifying the damage mechanisms present in paper associated with its production process. The microscopic structure of paper consists of a random mesh of paper fibres connected by hydrogen bonds. This implies the existence of two damage mechanisms, the failure of a fibre-fibre bond and the failure of a fibre. This paper describes a hybrid mathematical model which couples the mechanics of the mass-spring model to the acoustic wave propagation model for use in generating the acoustic signal emitted by complex structures of paper fibres under strain. The derivation of the mass-spring model can be found in [1,2], with details of the acoustic wave equation found in [3,4]. The numerical implementation of the vibro-acoustic model is discussed in detail with particular emphasis on the damping present in the numerical model. The hybrid model uses an implicit solver which intrinsically introduces artificial damping to the solution. The artificial damping is shown to affect the frequency response of the mass-spring model, therefore certain restrictions on the simulation time step must be enforced so that the model produces physically accurate results. The hybrid mathematical model is used to simulate small fibre networks to provide information on the acoustic response of each damage mechanism. The simulated AEs are then analysed using a continuous wavelet transform (CWT), described in [5], which provides a two dimensional time-frequency representation of the signal. The AEs from the two damage mechanisms show different characteristics in the CWT so that it is possible to define a fibre-fibre bond failure by the criteria listed below. The dominant frequency components of the AE must be at approximately 250 kHz or 750 kHz. The strongest frequency component may be at either approximately 250 kHz or 750 kHz. The duration of the frequency component at approximately 250 kHz is longer than that of the frequency component at approximately 750 kHz. Similarly, the criteria for identifying a fibre failure are given below. The dominant frequency component of the AE must be greater than 800 kHz. The duration of the dominant frequency component must be less than 5.00E-06 seconds. The dominant frequency component must be present at the front of the AE. Essentially, the failure of a fibre-fibre bond produces a low frequency wave and the failure of a fibre produces a high frequency pulse. Using this theoretical criteria, it is now possible to train an intelligent classifier such as the Self-Organising Map (SOM) [6] using the experimental data. First certain features must be extracted from the CWTs of the AEs for use in training the SOM. For this work, each CWT is divided into 200 windows of 5E-06s in duration covering a 100 kHz frequency range. The power ratio for each windows is then calculated and used as a feature. Having extracted the features from the AEs, the SOM can now be trained, but care is required so that the both damage mechanisms are adequately represented in the training set. This is an issue with paper as the failure of the fibre-fibre bonds is the prevalent damage mechanism. Once a suitable training set is found, the SOM can be trained and its performance analysed. For the SOM described in this work, there is a good chance that it will correctly classify the experimental AEs.
Resumo:
This paper concerns the development and validation (using an oil/water system) of a finite volume computer model of the continuous casting process for steel flat products. The emphasis is on hydrodynamic aspects and in particular the dynamic behaviour of the metal/slag interface. Instability and wave action encourage the entrainment of inclusions into the melt affecting product quality. To track the interface between oil and water a new implicit algorithm was developed, called the Counter Diffusion Method. To prevent excessive damping, a time-filtered version of the k-e model, was found necessary, with appropriate density stratification terms representing interface turbulence damping.
Resumo:
Melting of metallic samples in a cold crucible causes inclusions to concentrate on the surface owing to the action of the electromagnetic force in the skin layer. This process is dynamic, involving the melting stage, then quasi-stationary particle separation, and finally the solidification in the cold crucible. The proposed modeling technique is based on the pseudospectral solution method for coupled turbulent fluid flow, thermal and electromagnetic fields within the time varying fluid volume contained by the free surface, and partially the solid crucible wall. The model uses two methods for particle tracking: (1) a direct Lagrangian particle path computation and (2) a drifting concentration model. Lagrangian tracking is implemented for arbitrary unsteady flow. A specific numerical time integration scheme is implemented using implicit advancement that permits relatively large time-steps in the Lagrangian model. The drifting concentration model is based on a local equilibrium drift velocity assumption. Both methods are compared and demonstrated to give qualitatively similar results for stationary flow situations. The particular results presented are obtained for iron alloys. Small size particles of the order of 1 μm are shown to be less prone to separation by electromagnetic field action. In contrast, larger particles, 10 to 100 μm, are easily “trapped” by the electromagnetic field and stay on the sample surface at predetermined locations depending on their size and properties. The model allows optimization for melting power, geometry, and solidification rate.