3 resultados para Image-based cytometry
em Greenwich Academic Literature Archive - UK
Resumo:
Fourth-order partial differential equation (PDE) proposed by You and Kaveh (You-Kaveh fourth-order PDE), which replaces the gradient operator in classical second-order nonlinear diffusion methods with a Laplacian operator, is able to avoid blocky effects often caused by second-order nonlinear PDEs. However, the equation brought forward by You and Kaveh tends to leave the processed images with isolated black and white speckles. Although You and Kaveh use median filters to filter these speckles, median filters can blur the processed images to some extent, which weakens the result of You-Kaveh fourth-order PDE. In this paper, the reason why You-Kaveh fourth-order PDE can leave the processed images with isolated black and white speckles is analyzed, and a new fourth-order PDE based on the changes of Laplacian (LC fourth-order PDE) is proposed and tested. The new fourth-order PDE preserves the advantage of You-Kaveh fourth-order PDE and avoids leaving isolated black and white speckles. Moreover, the new fourth-order PDE keeps the boundary from being blurred and preserves the nuance in the processed images, so, the processed images look very natural.
Resumo:
Image inpainting refers to restoring a damaged image with missing information. The total variation (TV) inpainting model is one such method that simultaneously fills in the regions with available information from their surroundings and eliminates noises. The method works well with small narrow inpainting domains. However there remains an urgent need to develop fast iterative solvers, as the underlying problem sizes are large. In addition one needs to tackle the imbalance of results between inpainting and denoising. When the inpainting regions are thick and large, the procedure of inpainting works quite slowly and usually requires a significant number of iterations and leads inevitably to oversmoothing in the outside of the inpainting domain. To overcome these difficulties, we propose a solution for TV inpainting method based on the nonlinear multi-grid algorithm.
Resumo:
A Concise Intro to Image Processing using C++ presents state-of-the-art image processing methodology, including current industrial practices for image compression, image de-noising methods based on partial differential equations, and new image compression methods such as fractal image compression and wavelet compression. It includes elementary concepts of image processing and related fundamental tools with coding examples as well as exercises. With a particular emphasis on illustrating fractal and wavelet compression algorithms, the text covers image segmentation, object recognition, and morphology. An accompanying CD-ROM contains code for all algorithms.