2 resultados para IMAGERY REHEARSAL

em Greenwich Academic Literature Archive - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Production Workstation developed at the University of Greenwich is evaluated as a tool for assisting all those concerned with production. It enables the producer, director, and cinematographer to explore the quality of the images obtainable when using a plethora of tools. Users are free to explore many possible choices, ranging from 35mm to DV, and combine them with the many image manipulation tools of the cinematographer. The validation required for the system is explicitly examined, concerning the accuracy of the resulting imagery. Copyright © 1999 by the Society of Motion Picture and Television Engineers, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The curing of conductive adhesives and underfills can save considerable time and offer cost benefits for the microsystems and electronics packaging industry. In contrast to conventional ovens, curing by microwave energy generates heat internally within each individual component of an assembly. The rate at which heat is generated is different for each of the components and depends on the material properties as well as the oven power and frequency. This leads to a very complex and transient thermal state, which is extremely difficult to measure experimentally. Conductive adhesives need to be raised to a minimum temperature to initiate the cross-linking of the resin polymers, whilst some advanced packaging materials currently under investigation impose a maximum temperature constraint to avoid damage. Thermal imagery equipment integrated with the microwave oven can offer some information on the thermal state but such data is based on the surface temperatures. This paper describes computational models that can simulate the internal temperatures within each component of an assembly including the critical region between the chip and substrate. The results obtained demonstrate that due to the small mass of adhesive used in the joints, the temperatures reached are highly dependent on the material properties of the adjacent chip and substrate.