6 resultados para Hybrid linear model
em Greenwich Academic Literature Archive - UK
Resumo:
The powerful general Pacala-Hassell host-parasitoid model for a patchy environment, which allows host density–dependent heterogeneity (HDD) to be distinguished from between-patch, host density–independent heterogeneity (HDI), is reformulated within the class of the generalized linear model (GLM) family. This improves accessibility through the provision of general software within well–known statistical systems, and allows a rich variety of models to be formulated. Covariates such as age class, host density and abiotic factors may be included easily. For the case where there is no HDI, the formulation is a simple GLM. When there is HDI in addition to HDD, the formulation is a hierarchical generalized linear model. Two forms of HDI model are considered, both with between-patch variability: one has binomial variation within patches and one has extra-binomial, overdispersed variation within patches. Examples are given demonstrating parameter estimation with standard errors, and hypothesis testing. For one example given, the extra-binomial component of the HDI heterogeneity in parasitism is itself shown to be strongly density dependent.
Resumo:
This paper describes hybrid mathematical model which couples the mechanics of the mass/spring model to the acoustic wave propagation model for use in generating the acoustic signal emitted by complex structures of paper fibres under strain. A discussion of the coupling method is presented including remarks on the errors encountered intrinsic to the discretisation scheme. The numerical results of a vibrating rubber band and a vibrating paper fibre are compared to their experimental counterparts. The fundamental frequencies of the acoustic signals are compared showing a close agreement between the experimental and numerical results
Resumo:
The electronics industry is developing rapidly together with the increasingly complex problem of microelectronic equipment cooling. It has now become necessary for thermal design engineers to consider the problem of equipment cooling at some level. The use of Computational Fluid Dynamics (CFD) for such investigations is fast becoming a powerful and almost essential tool for the design, development and optimisation of engineering applications. However turbulence models remain a key issue when tackling such flow phenomena. The reliability of CFD analysis depends heavily on the turbulence model employed together with the wall functions implemented. In order to resolve the abrupt fluctuations experienced by the turbulent energy and other parameters located at near wall regions and shear layers a particularly fine computational mesh is necessary which inevitably increases the computer storage and run-time requirements. This paper will discuss results from an investigation into the accuract of currently used turbulence models. Also a newly formulated transitional hybrid turbulence model will be introduced with comparisonsaagainst experimental data.
Resumo:
This paper is intended to provide a general review of the current capabilities of turbulence models within the specific area of electronic cooling. The work discussed in this paper is aimed at examining currently available turbulence models and the formulation of a new two-layer hybrid kElki model which is specifically designed for electronic application areas. A classic backward facing step configuration will be used to evaluate the performance of the turbulence models in the prediction of separated flows. The preliminary results suggest that the hybrid ke/kl turbulence model is a promising zonal model to pursue.
Resumo:
This paper investigates the use of the acoustic emission (AE) monitoring technique for use in identifying the damage mechanisms present in paper associated with its production process. The microscopic structure of paper consists of a random mesh of paper fibres connected by hydrogen bonds. This implies the existence of two damage mechanisms, the failure of a fibre-fibre bond and the failure of a fibre. This paper describes a hybrid mathematical model which couples the mechanics of the mass-spring model to the acoustic wave propagation model for use in generating the acoustic signal emitted by complex structures of paper fibres under strain. The derivation of the mass-spring model can be found in [1,2], with details of the acoustic wave equation found in [3,4]. The numerical implementation of the vibro-acoustic model is discussed in detail with particular emphasis on the damping present in the numerical model. The hybrid model uses an implicit solver which intrinsically introduces artificial damping to the solution. The artificial damping is shown to affect the frequency response of the mass-spring model, therefore certain restrictions on the simulation time step must be enforced so that the model produces physically accurate results. The hybrid mathematical model is used to simulate small fibre networks to provide information on the acoustic response of each damage mechanism. The simulated AEs are then analysed using a continuous wavelet transform (CWT), described in [5], which provides a two dimensional time-frequency representation of the signal. The AEs from the two damage mechanisms show different characteristics in the CWT so that it is possible to define a fibre-fibre bond failure by the criteria listed below. The dominant frequency components of the AE must be at approximately 250 kHz or 750 kHz. The strongest frequency component may be at either approximately 250 kHz or 750 kHz. The duration of the frequency component at approximately 250 kHz is longer than that of the frequency component at approximately 750 kHz. Similarly, the criteria for identifying a fibre failure are given below. The dominant frequency component of the AE must be greater than 800 kHz. The duration of the dominant frequency component must be less than 5.00E-06 seconds. The dominant frequency component must be present at the front of the AE. Essentially, the failure of a fibre-fibre bond produces a low frequency wave and the failure of a fibre produces a high frequency pulse. Using this theoretical criteria, it is now possible to train an intelligent classifier such as the Self-Organising Map (SOM) [6] using the experimental data. First certain features must be extracted from the CWTs of the AEs for use in training the SOM. For this work, each CWT is divided into 200 windows of 5E-06s in duration covering a 100 kHz frequency range. The power ratio for each windows is then calculated and used as a feature. Having extracted the features from the AEs, the SOM can now be trained, but care is required so that the both damage mechanisms are adequately represented in the training set. This is an issue with paper as the failure of the fibre-fibre bonds is the prevalent damage mechanism. Once a suitable training set is found, the SOM can be trained and its performance analysed. For the SOM described in this work, there is a good chance that it will correctly classify the experimental AEs.
Resumo:
In terms of a general time theory which addresses time-elements as typed point-based intervals, a formal characterization of time-series and state-sequences is introduced. Based on this framework, the subsequence matching problem is specially tackled by means of being transferred into bipartite graph matching problem. Then a hybrid similarity model with high tolerance of inversion, crossover and noise is proposed for matching the corresponding bipartite graphs involving both temporal and non-temporal measurements. Experimental results on reconstructed time-series data from UCI KDD Archive demonstrate that such an approach is more effective comparing with the traditional similarity model based algorithms, promising robust techniques for lager time-series databases and real-life applications such as Content-based Video Retrieval (CBVR), etc.