7 resultados para Humanitarian logistics
em Greenwich Academic Literature Archive - UK
Resumo:
Over latest decade, Reverse Logistics (RL) has gained more and more attention from both industry and academia. In the past, most research on RL has been focused on automobile, electronic waste, computer, paper, package and package material. There is very little research and practice on drug recycling. Nevertheless, it is vital important to properly dispose expired drug because of hazardous contain which may harm to people and environment. In China, public awareness of the harmfulness of expired drugs is still very low and very few efforts have been made to recycle drugs. Therefore, this research aims to build up a conceptual framework to indentify factors of influencing drug recycling in China, from scratch borrowing from existing literature and industry practices in other recycling areas. This framework helps in designing reverse logistic (RL) network and also can provide a useful reference tool for policymakers at the local and national level. Furthermore, a primary research is planed to validate the framework and RL network.
Resumo:
The paper considers the open shop scheduling problem to minimize the make-span, provided that one of the machines has to process the jobs according to a given sequence. We show that in the preemptive case the problem is polynomially solvable for an arbitrary number of machines. If preemption is not allowed, the problem is NP-hard in the strong sense if the number of machines is variable, and is NP-hard in the ordinary sense in the case of two machines. For the latter case we give a heuristic algorithm that runs in linear time and produces a schedule with the makespan that is at most 5/4 times the optimal value. We also show that the two-machine problem in the nonpreemptive case is solvable in pseudopolynomial time by a dynamic programming algorithm, and that the algorithm can be converted into a fully polynomial approximation scheme. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 705–731, 1998
Resumo:
This paper examines scheduling problems in which the setup phase of each operation needs to be attended by a single server, common for all jobs and different from the processing machines. The objective in each situation is to minimize the makespan. For the processing system consisting of two parallel dedicated machines we prove that the problem of finding an optimal schedule is NP-hard in the strong sense even if all setup times are equal or if all processing times are equal. For the case of m parallel dedicated machines, a simple greedy algorithm is shown to create a schedule with the makespan that is at most twice the optimum value. For the two machine case, an improved heuristic guarantees a tight worst-case ratio of 3/2. We also describe several polynomially solvable cases of the later problem. The two-machine flow shop and the open shop problems with a single server are also shown to be NP-hard in the strong sense. However, we reduce the two-machine flow shop no-wait problem with a single server to the Gilmore-Gomory traveling salesman problem and solve it in polynomial time. (c) 2000 John Wiley & Sons, Inc.
Resumo:
We study a two-machine flow shop scheduling problem with no-wait in process, in which one of the machines is not available during a specified time interval. We consider three scenarios of handing the operation affected by the nonavailability interval. Its processing may (i) start from scratch after the interval, or (ii) be resumed from the point of interruption, or (iii) be partially restarted after the interval. The objective is to minimize the makespan. We present an approximation algorithm that for all these scenarios delivers a worst-case ratio of 3/2. For the second scenario, we offer a 4/3-approximation algorithm.
Resumo:
We consider a problem of scheduling jobs on m parallel machines. The machines are dedicated, i.e., for each job the processing machine is known in advance. We mainly concentrate on the model in which at any time there is one unit of an additional resource. Any job may be assigned the resource and this reduces its processing time. A job that is given the resource uses it at each time of its processing. No two jobs are allowed to use the resource simultaneously. The objective is to minimize the makespan. We prove that the two-machine problem is NP-hard in the ordinary sense, describe a pseudopolynomial dynamic programming algorithm and convert it into an FPTAS. For the problem with an arbitrary number of machines we present an algorithm with a worst-case ratio close to 3/2, and close to 3, if a job can be given several units of the resource. For the problem with a fixed number of machines we give a PTAS. Virtually all algorithms rely on a certain variant of the linear knapsack problem (maximization, minimization, multiple-choice, bicriteria). © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008
Resumo:
We consider the two-machine open shop scheduling problem in which the jobs are brought to the system by a single transporter and moved between the processing machines by the same transporter. The purpose is to split the jobs into batches and to find the sequence of moves of the transporter so that the time by which the completed jobs are collected together on board the transporter is minimal. We present a 7/5-approximation algorithm. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2009