19 resultados para Hughes, Brandun

em Greenwich Academic Literature Archive - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that during alloy solidification, convection currents close to the so-lidification front have an influence on the structure of dendrites, the local solute concentration, the pattern of solid segregation, and eventually the microstructure of the casting and hence its mechanical properties. Controlled stirring of the melt in continuous casting or in ingot solidification is thought to have a beneficial effect. Free convection currents occur naturally due to temperature differences in the melt and for any given configuration, their strength is a function of the degree of superheat present. A more controlled forced convection current can be induced using electro-magnetic stirring. The authors have applied their Control-Volume based MHD method [1, 2] to the problem of tin solidification in an annular crucible with a water-cooled inner wall and a resistance heated outer one, for both free and forced convection situations and for various degrees of superheat. This problem was studied experimentally by Vives and Perry [3] who obtained temperature measurements, front positions and maps of electro-magnetic body force for a range of superheat values. The results of the mathematical model are compared critically against the experimental ones, in order to validate the model and also to demonstrate the usefulness of the coupled solution technique followed, as a predictive tool and a design aid. Figs 6, refs 19.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are many processes, particularly in the nuclear and metals processing industries, where electromagnetic fields are used to influence the flow behaviour of a fluid. Procedures exploiting finite volume (FV) methods in both structured and unstructured meshes have recently been developed which enable this influence to be modelled in the context of conventional FV CFD codes. A range of problems have been tackled by the authors, including electromagnetic pumps and brakes, weirs and dams in steelmaking tundishes and interface effects in aluminium smelting cells. Two cases are presented here, which exemplify the application of the new procedures. The first case investigates the influence of electromagnetic fields on solidification front progression in a tin casting and the second case shows how the liquid metals free surface may be controlled through an externally imposed magnetic field in the semi-levitation casting process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the computational modelling of welding phenomena within a versatile numerical framework. The framework embraces models from both the fields of computational fluid dynamics (CFD) and computational solid mechanics (CSM). With regard to the CFD modelling of the weld pool fluid dynamics, heat transfer and phase change, cell-centred finite volume (FV) methods are employed. Additionally, novel vertex-based FV methods are employed with regard to the elasto-plastic deformation associated with the CSM. The FV methods are included within an integrated modelling framework, PHYSICA, which can be readily applied to unstructured meshes. The modelling techniques are validated against a variety of reference solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 3D model of melt pool created by a moving arc type heat sources has been developed. The model solves the equations of turbulent fluid flow, heat transfer and electromagnetic field to demonstrate the flow behaviour phase-change in the pool. The coupled effects of buoyancy, capillary (Marangoni) and electromagnetic (Lorentz) forces are included within an unstructured finite volume mesh environment. The movement of the welding arc along the workpiece is accomplished via a moving co-ordinator system. Additionally a method enabling movement of the weld pool surface by fluid convection is presented whereby the mesh in the liquid region is allowed to move through a free surface. The surface grid lines move to restore equilibrium at the end of each computational time step and interior grid points then adjust following the solution of a Laplace equation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of finding the heat distribution and the shape of the liquid fraction during laser welding of a thick steel plate using the finite volume CFD package PHYSICA. Since the shape of the keyhole is not known in advance, the following two-step approach to handling this problem has been employed. In the first stage, we determine the geometry of the keyhole for the steady-state case and form an appropriate mesh that includes both the workpiece and the keyhole. In the second stage, we impose the boundary conditions by assigning temperature to the walls of the keyhole and find the heat distribution and the shape of the liquid fraction for a given welding speed and material properties. We construct a fairly accurate approximation of the keyhole as a sequence of include sliced cones. A formula for finding the initial radius of the keyhole is derived by determining the radius of the vaporisation isotherm for the line heat source. We report on the results of a series of computational experiments for various heat input values and welding velocities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditionally, before flip chips can be assembled the dies have to be attached with solder bumps. This process involves the deposition of metal layers on the Al pads on the dies and this is called the under bump metallurgy (UBM). In an alternative process, however, Copper (Cu) columns can be used to replace solder bumps and the UBM process may be omitted altogether. After the bumping process, the bumped dies can be assembled on to the printed circuit board (PCB) by using either solder or conductive adhesives. In this work, the reliability issues of flip chips with Cu column bumped dies have been studied. The flip chip lifetime associated with the solder fatigue failure has been modeled for a range of geometric parameters. The relative importance of these parameters is given and solder volume has been identified as the most important design parameter for long-term reliability. Another important problem that has been studied in this work is the dissolution of protection metals on the pad and Cu column in the reflow process. For small solder joints the amount of Cu which dissolves into the molten solder after the protection layers have worn out may significantly affect solder joint properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work presented in this paper is part of the OPISA project. This is a collaborative research project between the University of Greenwich and Bookham Technology. This report describes some of the initial work undertaken towards the goal of investigating optoelectronic packaging where alignment issues between optical sources and fibers can arise as part of the fabrication process. The focus of this study is on charting the dynamics of laser spot weld formation. This paper introduces some of the initial simulation work that has been undertaken and presents a model describing a transient heat source applied from a laser pulse to weld a stainless steel sleeve and ferrule and the resulting weld formation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At present the vast majority of Computer-Aided- Engineering (CAE) analysis calculations for microelectronic and microsystems technologies are undertaken using software tools that focus on single aspects of the physics taking place. For example, the design engineer may use one code to predict the airflow and thermal behavior of an electronic package, then another code to predict the stress in solder joints, and then yet another code to predict electromagnetic radiation throughout the system. The reason for this focus of mesh-based codes on separate parts of the governing physics is essentially due to the numerical technologies used to solve the partial differential equations, combined with the subsequent heritage structure in the software codes. Using different software tools, that each requires model build and meshing, leads to a large investment in time, and hence cost, to undertake each of the simulations. During the last ten years there has been significant developments in the modelling community around multi- physics analysis. These developments are being followed by many of the code vendors who are now providing multi-physics capabilities in their software tools. This paper illustrates current capabilities of multi-physics technology and highlights some of the future challenges

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new contactless pneumatic microfeeder based on distributed manipulation is proposed. By cooperation of dynamically programmable microactuators, the part to be conveyed floats over an air cushion and is moved to the desired location with the desired orientation. CFD simulations are used to test the validity of the proposed concept and refine the design of the microactuators

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical modelling technology and software is now being used to underwrite the design of many microelectronic and microsystems components. The demands for greater capability of these analysis tools are increasing dramatically, as the user community is faced with the challenge of producing reliable products in ever shorter lead times. This leads to the requirement for analysis tools to represent the interactions amongst the distinct phenomena and physics at multiple length and timescales. Multi-physics and Multi-scale technology is now becoming a reality with many code vendors. This chapter discusses the current status of modelling tools that assess the impact of nano-technology on the fabrication/packaging and testing of microsystems. The chapter is broken down into three sections: Modelling Technologies, Modelling Application to Fabrication, and Modelling Application to Assembly/Packing and Modelling Applied for Test and Metrology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrodeposition is a widely used technique for the fabrication of high aspect ratio microstructure components. In recent years much research has been focused within this area with an aim to understanding the physics behind the filling of high-aspect ratio vias and trenches on PCB's and in particular how they can be made without the formation of voids in the deposited material. This paper describes some of the fundamental work towards the advancement of numerical models that can predict the electrodeposition process and addresses: i) A novel technique for interface motion based on a variation of a donor-acceptor technique ii) A methodology for the investigation of stress profiles in deposits iii) The implementation of acoustic forces to generate replenishing electrolytic flow circulation in recessed features.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents preliminary studies in electroplating using megasonic agitation to avoid the formation of voids within high aspect ratio microvias that are used for the redistribution of interconnects in high density interconnection technology in printed circuit boards. Through this technique, uniform deposition of metal on the side walls of the vias is possible. High frequency acoustic streaming at megasonic frequencies enables the decrease of the Nernst diffusion layer down to the sub-micron range, allowing thereby conformal electrodeposition in deep grooves. This effect enables the normally convection free liquid near the surface to be agitated. Higher throughput and better control of the material properties of the deposits can be achieved for the manufacturing of embedded interconnections and metal-based MEMS. For optimal filling performance of the microvias, a full design of experiments (DOE) and a multi-physics numerical simulation have been conducted to analyse the influence of megasonic agitation on the plating quality of the microvias. Megasonic based deposition has been found to increase the deposition rate as well as improving the quality of the metal deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper details the prototyping of a novel three axial micro probe based on utilisation of piezoelectric sensors and actuators for true three dimensional metrology and measurements at micro- and nanometre scale. Computational mechanics is used first to model and simulate the performance of the conceptual design of the micro-probe. Piezoelectric analysis is conducted to understand performance of three different materials - silicon, glassy carbon, and nickel - and the effect of load parameters (amplitude, frequency, phase angle) on the magnitude of vibrations. Simulations are also used to compare several design options for layout of the lead zirconium titanate (PZT) sensors and to identify the most feasible from fabrication point of view design. The material options for the realisation of the device have been also tested. Direct laser machining was selected as the primary means of production. It is found that a Yb MOPA based fiber laser was capable of providing the necessary precision on glassy carbon (GC), although machining trials on Si and Ni were less successful due to residual thermal effects.To provide the active and sensing elements on the flexures of the probe, PZT thick films are developed and deposited at low temperatures (Lt720 degC) allowing a high quality functional ceramic to be directly integrated with selected materials. Characterisation of the materials has shown that the film has a homogenous and small pore microstructure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we propose an agitation method based on megasonic acoustic streaming to overcome the limitations in plating rate and uniformity of the metal deposits during the electroplating process. Megasonic agitation at a frequency of 1 MHz allows the reduction of the thickness of the Nernst diffusion layer to less than 600 nm. Two applications that demonstrate the benefits of megasonic acoustic streaming are presented: the formation of uniform ultra-fine pitch flip-chip bumps and the metallisation of high aspect ratio microvias. For the latter application, a multi-physics based numerical simulation is implemented to describe the hydrodynamics introduced by the acoustic waves as they travel inside the deep microvias.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrodeposition is a widely used technique for the fabrication of high aspect ratio microstructures. In recent years, much research has been focused within this area aiming to understand the physics behind the filling of high aspect ratio vias and trenches on substrates and in particular how they can be made without the formation of voids in the deposited material. This paper reports on the fundamental work towards the advancement of numerical algorithms that can predict the electrodeposition process in micron scaled features. Two different numerical approaches have been developed, which capture the motion of the deposition interface and 2-D simulations are presented for both methods under two deposition regimes: those where surface kinetics is governed by Ohm’s law and the Butler–Volmer equation, respectively. In the last part of this paper the modelling of acoustic forces and their subsequent impact on the deposition profile through convection is examined.