7 resultados para High-performance computing

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The demands of the process of engineering design, particularly for structural integrity, have exploited computational modelling techniques and software tools for decades. Frequently, the shape of structural components or assemblies is determined to optimise the flow distribution or heat transfer characteristics, and to ensure that the structural performance in service is adequate. From the perspective of computational modelling these activities are typically separated into: • fluid flow and the associated heat transfer analysis (possibly with chemical reactions), based upon Computational Fluid Dynamics (CFD) technology • structural analysis again possibly with heat transfer, based upon finite element analysis (FEA) techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract not available

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilevel algorithms are a successful class of optimization techniques that address the mesh partitioning problem for mapping meshes onto parallel computers. They usually combine a graph contraction algorithm together with a local optimization method that refines the partition at each graph level. To date, these algorithms have been used almost exclusively to minimize the cut-edge weight in the graph with the aim of minimizing the parallel communication overhead. However, it has been shown that for certain classes of problems, the convergence of the underlying solution algorithm is strongly influenced by the shape or aspect ratio of the subdomains. Therefore, in this paper, the authors modify the multilevel algorithms to optimize a cost function based on the aspect ratio. Several variants of the algorithms are tested and shown to provide excellent results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Realizing scalable performance on high performance computing systems is not straightforward for single-phenomenon codes (such as computational fluid dynamics [CFD]). This task is magnified considerably when the target software involves the interactions of a range of phenomena that have distinctive solution procedures involving different discretization methods. The problems of addressing the key issues of retaining data integrity and the ordering of the calculation procedures are significant. A strategy for parallelizing this multiphysics family of codes is described for software exploiting finite-volume discretization methods on unstructured meshes using iterative solution procedures. A mesh partitioning-based SPMD approach is used. However, since different variables use distinct discretization schemes, this means that distinct partitions are required; techniques for addressing this issue are described using the mesh-partitioning tool, JOSTLE. In this contribution, the strategy is tested for a variety of test cases under a wide range of conditions (e.g., problem size, number of processors, asynchronous / synchronous communications, etc.) using a variety of strategies for mapping the mesh partition onto the processor topology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The parallelization of existing/industrial electromagnetic software using the bulk synchronous parallel (BSP) computation model is presented. The software employs the finite element method with a preconditioned conjugate gradient-type solution for the resulting linear systems of equations. A geometric mesh-partitioning approach is applied within the BSP framework for the assembly and solution phases of the finite element computation. This is combined with a nongeometric, data-driven parallel quadrature procedure for the evaluation of right-hand-side terms in applications involving coil fields. A similar parallel decomposition is applied to the parallel calculation of electron beam trajectories required for the design of tube devices. The BSP parallelization approach adopted is fully portable, conceptually simple, and cost-effective, and it can be applied to a wide range of finite element applications not necessarily related to electromagnetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of deriving parallel mesh partitioning algorithms for mapping unstructured meshes to parallel computers is discussed in this chapter. In itself this raises a paradox - we seek to find a high quality partition of the mesh, but to compute it in parallel we require a partition of the mesh. In fact, we overcome this difficulty by deriving an optimisation strategy which can find a high quality partition even if the quality of the initial partition is very poor and then use a crude distribution scheme for the initial partition. The basis of this strategy is to use a multilevel approach combined with local refinement algorithms. Three such refinement algorithms are outlined and some example results presented which show that they can produce very high global quality partitions, very rapidly. The results are also compared with a similar multilevel serial partitioner and shown to be almost identical in quality. Finally we consider the impact of the initial partition on the results and demonstrate that the final partition quality is, modulo a certain amount of noise, independent of the initial partition.