2 resultados para High-Dimensional Space Geometrical Informatics (HDSGI)
em Greenwich Academic Literature Archive - UK
Resumo:
In this paper we propose a generalisation of the k-nearest neighbour (k-NN) retrieval method based on an error function using distance metrics in the solution and problem space. It is an interpolative method which is proposed to be effective for sparse case bases. The method applies equally to nominal, continuous and mixed domains, and does not depend upon an embedding n-dimensional space. In continuous Euclidean problem domains, the method is shown to be a generalisation of the Shepard's Interpolation method. We term the retrieval algorithm the Generalised Shepard Nearest Neighbour (GSNN) method. A novel aspect of GSNN is that it provides a general method for interpolation over nominal solution domains. The performance of the retrieval method is examined with reference to the Iris classification problem,and to a simulated sparse nominal value test problem. The introducion of a solution-space metric is shown to out-perform conventional nearest neighbours methods on sparse case bases.
Resumo:
Of key importance to oil and gas companies is the size distribution of fields in the areas that they are drilling. Recent arguments suggest that there are many more fields yet to be discovered in mature provinces than had previously been thought because the underlying distribution is monotonic not peaked. According to this view the peaked nature of the distribution for discovered fields reflects not the underlying distribution but the effect of economic truncation. This paper contributes to the discussion by analysing up-to-date exploration and discovery data for two mature provinces using the discovery-process model, based on sampling without replacement and implicitly including economic truncation effects. The maximum likelihood estimation involved generates a high-dimensional mixed-integer nonlinear optimization problem. A highly efficient solution strategy is tested, exploiting the separable structure and handling the integer constraints by treating the problem as a masked allocation problem in dynamic programming.