2 resultados para Hierarchical clustering

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The powerful general Pacala-Hassell host-parasitoid model for a patchy environment, which allows host density–dependent heterogeneity (HDD) to be distinguished from between-patch, host density–independent heterogeneity (HDI), is reformulated within the class of the generalized linear model (GLM) family. This improves accessibility through the provision of general software within well–known statistical systems, and allows a rich variety of models to be formulated. Covariates such as age class, host density and abiotic factors may be included easily. For the case where there is no HDI, the formulation is a simple GLM. When there is HDI in addition to HDD, the formulation is a hierarchical generalized linear model. Two forms of HDI model are considered, both with between-patch variability: one has binomial variation within patches and one has extra-binomial, overdispersed variation within patches. Examples are given demonstrating parameter estimation with standard errors, and hypothesis testing. For one example given, the extra-binomial component of the HDI heterogeneity in parasitism is itself shown to be strongly density dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents two multilevel refinement algorithms for the capacitated clustering problem. Multilevel refinement is a collaborative technique capable of significantly aiding the solution process for optimisation problems. The central methodologies of the technique are filtering solutions from the search space and reducing the level of problem detail to be considered at each level of the solution process. The first multilevel algorithm uses a simple tabu search while the other executes a standard local search procedure. Both algorithms demonstrate that the multilevel technique is capable of aiding the solution process for this combinatorial optimisation problem.