4 resultados para Hawthorne, Nathaniel
em Greenwich Academic Literature Archive - UK
Resumo:
This paper describes a methodology for deploying flexible dynamic configuration into embedded systems whilst preserving the reliability advantages of static systems. The methodology is based on the concept of decision points (DP) which are strategically placed to achieve fine-grained distribution of self-management logic to meet application-specific requirements. DP logic can be changed easily, and independently of the host component, enabling self-management behavior to be deferred beyond the point of system deployment. A transparent Dynamic Wrapper mechanism (DW) automatically detects and handles problems arising from the evaluation of self-management logic within each DP and ensures that the dynamic aspects of the system collapse down to statically defined default behavior to ensure safety and correctness despite failures. Dynamic context management contributes to flexibility, and removes the need for design-time binding of context providers and consumers, thus facilitating run-time composition and incremental component upgrade.
Resumo:
Providing a method of transparent communication and interoperation between distributed software is a requirement for many organisations and several standard and non-standard infrastructures exist for this purpose. Component models do more than just provide a plumbing mechanism for distributed applications, they provide a more controlled interoperation between components. There are very few component models however that have support for advanced dynamic reconfigurability. This paper describes a component model which provides controlled and constrained transparent communication and inter-operation between components in the form of a hierarchical component model. At the same time, the model contains support for advanced run-time reconfigurability of components. The process and benefits of designing a system using the presented model are discussed. A way in which reflective techniques and component frameworks can work together to produce dynamic adaptable systems is explained.
Resumo:
This paper describes a methodology for embedding dynamic behaviour into software components. The implications and system architecture requirements to support this adaptivity are discussed. This work is part of a European Commission funded and industry supported project to produce a reconfigurable middleware for use in automotive systems. Such systems must be trustable against illegal internal behaviour and activity with external origins, additional devices for example. Policy-based computing is used here as an example of embedded logic. A key contribution of this work is the way in which static and dynamic aspects of the system are interfaced, such that the behaviour can be changed very flexibly (even during run-time), without modification, recompilation or redeployment of the embedded application code. An implementation of these concepts is presented, focussing on achieving trust in the use of dynamic behaviour.
Resumo:
This paper describes a highly flexible component architecture, primarily designed for automotive control systems, that supports distributed dynamically- configurable context-aware behaviour. The architecture enforces a separation of design-time and run-time concerns, enabling almost all decisions concerning runtime composition and adaptation to be deferred beyond deployment. Dynamic context management contributes to flexibility. The architecture is extensible, and can embed potentially many different self-management decision technologies simultaneously. The mechanism that implements the run-time configuration has been designed to be very robust, automatically and silently handling problems arising from the evaluation of self- management logic and ensuring that in the worst case the dynamic aspects of the system collapse down to static behavior in totally predictable ways.