3 resultados para HPLC-ELSD

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Nicardipine is a member of a family of calcium channel blockers named dihydropiridines that are known to be photolabile and may cause phototoxicity. It is therefore vital to develop analytical method which can study the photodegradation of nicardipine. Method: Forced acid degradation of nicardipine was conducted by heating 12 ml of 1 mg/ml nicardipine with 3 ml of 2.5 M HCl for two hours. A gradient HPLC medthod was developed using Agilent Technologies 1200 series quaternary system. Separation was achieved with a Hichrome (250 x 4.6 mm) 5 μm C18 reversed phase column and mobile phase composition of 70% A(100%v/v water) and 30% B(99%v/v acetonitrile + 1%v/v formic acid) at time zero, composition of A and B was then charged to 60%v/v A;40%v/v B at 10minutes, 50%v/v A; 50%v/v B at 30minutes and 70%v/v A; 30%v/v B at 35minutes. 20μl of 0.8mg/ml of nicardipine degradation was injected at room temperature (25oC). The gradient method was transferred onto a HPLC-ESI-MS system (HP 1050 series - AQUAMAX mass detector) and analysis conducted with an acid degradation concentration of 0.25mg/ml and 20μl injection volume. ESI spectra were acquired in positive ionisation mode with MRM 0-600 m/z. Results: Eleven nicardipine degradation products were detected in the HPLC analysis and the resolution (RS) between the respective degradants where 1.0, 1.2, 6.0, 0.4, 1.7, 3.7, 1.8, 1.0, and 1.7 respectively. Nine degradation products were identified in the ESI spectra with the respective m/z ratio; 171.0, 166.1, 441.2, 423.2, 455.2, 455.2, 331.1, 273.1, and 290.1. The possible molecular formulae for each degradants were ambiguously determined. Conclusion: A sensitive and specific method was developed for the analysis of nicardipine degradants. Method enables detection and quantification of nicardipine degradation products that can be used for the study of the kinetics of nicardipine degradation processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Counter-current chromatography (CCC) is a technique that shows a lot of potential for large scale purification. Its usefulness in a "research and development" pharmaceutical environment has been investigated, and the conclusions are shown in this article. The use of CCC requires the development of an appropriate solvent system (a parameter of critical importance), a process which can be tedious. This article presents a novel strategy, combining a statistical approach and fast HPLC to generate a three-dimensional partition coefficient map and rapidly predict an optimal solvent system. This screen is performed in half a day and involves 9 experiments per solvent mixture. Test separations were performed using that screen to ensure the validity of the method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flora of the Yucatan peninsula (Mexico) includes approximately 3000 plant species. Sideroxylon foetidissimum Jacq. subsp. gaumeri (Sapotaceae) is an endemic plant to the Yucatan peninsula; its fruit is edible and local people use the plant for medicinal purposes, although no details on its preparation or application are available [1,2]. A preliminary cytotoxic evaluation of the ethanolic root extract of S. foetidissimum revealed a potent activity against murine macrophage like cell line RAW 264.7 (IC50=39.54±4.11µg/mL). The systematic bioassay-guided fractionation of the extract resulted in the identification of the active saponin-containing fraction (IC50=33.69±6.19µg/mL). Four new triterpenoid saponins and a 1:1 mixture of two saponins were isolated from the active saponin- containing fraction. The evaluation of their cytotoxic activity revealed no activity for the tested pure saponins; however, the 1:1 mixture of saponins showed a potent activity (IC50=11.91±1.49µg/mL). The isolation of the saponins was carried out using semi-preparative HPLC. The structural assignments of the pure saponins were based on 1D (1H and 13C and DEPT-135) and 2D (COSY, HMBC, HSQC and TOCSY) NMR and mass spectrometry analyses. In this presentation, the isolation, identification and cytotoxic activity of the isolated compounds is discussed in more detail.