3 resultados para HIGH-EFFICIENCY TRANSFORMATION

em Greenwich Academic Literature Archive - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes ways in which emergence engineering principles can be applied to the development of distributed applications. A distributed solution to the graph-colouring problem is used as a vehicle to illustrate some novel techniques. Each node acts autonomously to colour itself based only on its local view of its neighbourhood, and following a simple set of carefully tuned rules. Randomness breaks symmetry and thus enhances stability. The algorithm has been developed to enable self-configuration in wireless sensor networks, and to reflect real-world configurations the algorithm operates with 3 dimensional topologies (reflecting the propagation of radio waves and the placement of sensors in buildings, bridge structures etc.). The algorithm’s performance is evaluated and results presented. It is shown to be simultaneously highly stable and scalable whilst achieving low convergence times. The use of eavesdropping gives rise to low interaction complexity and high efficiency in terms of the communication overheads.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The availability of CFD software that can easily be used and produce high efficiency on a wide range of parallel computers is extremely limited. The investment and expertise required to parallelise a code can be enormous. In addition, the cost of supercomputers forces high utilisation to justify their purchase, requiring a wide range of software. To break this impasse, tools are urgently required to assist in the parallelisation process that dramatically reduce the parallelisation time but do not degrade the performance of the resulting parallel software. In this paper we discuss enhancements to the Computer Aided Parallelisation Tools (CAPTools) to assist in the parallelisation of complex unstructured mesh-based computational mechanics codes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Unstructured mesh codes for modelling continuum physics phenomena have evolved to provide the facility to model complex interacting systems. Parallelisation of such codes using single Program Multi Data (SPMD) domain decomposition techniques implemented with message passing has been demonstrated to provide high parallel efficiency, scalability to large numbers of processors P and portability across a wide range of parallel platforms. High efficiency, especially for large P requires that load balance is achieved in each parallel loop. For a code in which loops span a variety of mesh entity types, for example, elements, faces and vertices, some compromise is required between load balance for each entity type and the quantity of inter-processor communication required to satisfy data dependence between processors.