18 resultados para Graph G
em Greenwich Academic Literature Archive - UK
Resumo:
A parallel method for the dynamic partitioning of unstructured meshes is described. The method introduces a new iterative optimization technique known as relative gain optimization which both balances the workload and attempts to minimize the interprocessor communications overhead. Experiments on a series of adaptively refined meshes indicate that the algorithm provides partitions of an equivalent or higher quality to static partitioners (which do not reuse the existing partition) and much more rapidly. Perhaps more importantly, the algorithm results in only a small fraction of the amount of data migration compared to the static partitioners.
Resumo:
The requirement for a very accurate dependence analysis to underpin software tools to aid the generation of efficient parallel implementations of scalar code is argued. The current status of dependence analysis is shown to be inadequate for the generation of efficient parallel code, causing too many conservative assumptions to be made. This paper summarises the limitations of conventional dependence analysis techniques, and then describes a series of extensions which enable the production of a much more accurate dependence graph. The extensions include analysis of symbolic variables, the development of a symbolic inequality disproof algorithm and its exploitation in a symbolic Banerjee inequality test; the use of inference engine proofs; the exploitation of exact dependence and dependence pre-domination attributes; interprocedural array analysis; conditional variable definition tracing; integer array tracing and division calculations. Analysis case studies on typical numerical code is shown to reduce the total dependencies estimated from conventional analysis by up to 50%. The techniques described in this paper have been embedded within a suite of tools, CAPTools, which combines analysis with user knowledge to produce efficient parallel implementations of numerical mesh based codes.
Resumo:
A coloration is an exact regular coloration if whenever two vertices are colored the same they have identically colored neighborhoods. For example, if one of the two vertices that are colored the same is connected to three yellow vertices, two white and red, then the other vertex is as well. Exact regular colorations have been discussed informally in the social network literature. However they have been part of the mathematical literature for some time, though in a different format. We explore this concept in terms of social networks and illustrate some important results taken from the mathematical literature. In addition we show how the concept can be extended to ecological and perfect colorations, and discuss how the CATREGE algorithm can be extended to find the maximal exact regular coloration of a graph.
Resumo:
We describe a heuristic method for drawing graphs which uses a multilevel technique combined with a force-directed placement algorithm. The multilevel process groups vertices to form clusters, uses the clusters to define a new graph and is repeated until the graph size falls below some threshold. The coarsest graph is then given an initial layout and the layout is successively refined on all the graphs starting with the coarsest and ending with the original. In this way the multilevel algorithm both accelerates and gives a more global quality to the force- directed placement. The algorithm can compute both 2 & 3 dimensional layouts and we demonstrate it on a number of examples ranging from 500 to 225,000 vertices. It is also very fast and can compute a 2D layout of a sparse graph in around 30 seconds for a 10,000 vertex graph to around 10 minutes for the largest graph. This is an order of magnitude faster than recent implementations of force-directed placement algorithms.
Resumo:
This paper presents a framework for Historical Case-Based Reasoning (HCBR) which allows the expression of both relative and absolute temporal knowledge, representing case histories in the real world. The formalism is founded on a general temporal theory that accommodates both points and intervals as primitive time elements. A case history is formally defined as a collection of (time-independent) elemental cases, together with its corresponding temporal reference. Case history matching is two-fold, i.e., there are two similarity values need to be computed: the non-temporal similarity degree and the temporal similarity degree. On the one hand, based on elemental case matching, the non-temporal similarity degree between case histories is defined by means of computing the unions and intersections of the involved elemental cases. On the other hand, by means of the graphical presentation of temporal references, the temporal similarity degree in case history matching is transformed into conventional graph similarity measurement.
Resumo:
We describe a heuristic method for drawing graphs which uses a multilevel framework combined with a force-directed placement algorithm. The multilevel technique matches and coalesces pairs of adjacent vertices to define a new graph and is repeated recursively to create a hierarchy of increasingly coarse graphs, G0, G1, …, GL. The coarsest graph, GL, is then given an initial layout and the layout is refined and extended to all the graphs starting with the coarsest and ending with the original. At each successive change of level, l, the initial layout for Gl is taken from its coarser and smaller child graph, Gl+1, and refined using force-directed placement. In this way the multilevel framework both accelerates and appears to give a more global quality to the drawing. The algorithm can compute both 2 & 3 dimensional layouts and we demonstrate it on examples ranging in size from 10 to 225,000 vertices. It is also very fast and can compute a 2D layout of a sparse graph in around 12 seconds for a 10,000 vertex graph to around 5-7 minutes for the largest graphs. This is an order of magnitude faster than recent implementations of force-directed placement algorithms.
Resumo:
The graph-partitioning problem is to divide a graph into several pieces so that the number of vertices in each piece is the same within some defined tolerance and the number of cut edges is minimised. Important applications of the problem arise, for example, in parallel processing where data sets need to be distributed across the memory of a parallel machine. Very effective heuristic algorithms have been developed for this problem which run in real-time, but it is not known how good the partitions are since the problem is, in general, NP-complete. This paper reports an evolutionary search algorithm for finding benchmark partitions. A distinctive feature is the use of a multilevel heuristic algorithm to provide an effective crossover. The technique is tested on several example graphs and it is demonstrated that our method can achieve extremely high quality partitions significantly better than those found by the state-of-the-art graph-partitioning packages.
Resumo:
This paper introduces a mechanism for representing and recognizing case history patterns with rich internal temporal aspects. A case history is characterized as a collection of elemental cases as in conventional case-based reasoning systems, together with the corresponding temporal constraints that can be relative and/or with absolute values. A graphical representation for case histories is proposed as a directed, partially weighted and labeled simple graph. In terms of such a graphical representation, an eigen-decomposition graph matching algorithm is proposed for recognizing case history patterns.
Resumo:
In this chapter we look at JOSTLE, the multilevel graph-partitioning software package, and highlight some of the key research issues that it addresses. We first outline the core algorithms and place it in the context of the multilevel refinement paradigm. We then look at issues relating to its use as a tool for parallel processing and, in particular, partitioning in parallel. Since its first release in 1995, JOSTLE has been used for many mesh-based parallel scientific computing applications and so we also outline some enhancements such as multiphase mesh-partitioning, heterogeneous mapping and partitioning to optimise subdomain shape
Resumo:
It is shown that every connected, locally connected graph with the maximum vertex degree Δ(G)=5 and the minimum vertex degree δ(G)3 is fully cycle extendable. For Δ(G)4, all connected, locally connected graphs, including infinite ones, are explicitly described. The Hamilton Cycle problem for locally connected graphs with Δ(G)7 is shown to be NP-complete
Resumo:
In this paper, we shall critically examine a special class of graph matching algorithms that follow the approach of node-similarity measurement. A high-level algorithm framework, namely node-similarity graph matching framework (NSGM framework), is proposed, from which, many existing graph matching algorithms can be subsumed, including the eigen-decomposition method of Umeyama, the polynomial-transformation method of Almohamad, the hubs and authorities method of Kleinberg, and the kronecker product successive projection methods of Wyk, etc. In addition, improved algorithms can be developed from the NSGM framework with respects to the corresponding results in graph theory. As the observation, it is pointed out that, in general, any algorithm which can be subsumed from NSGM framework fails to work well for graphs with non-trivial auto-isomorphism structure.
Resumo:
This paper examines different ways of measuring similarity between software design models for Case Based Reasoning (CBR) to facilitate reuse of software design and code. The paper considers structural and behavioural aspects of similarity between software design models. Similarity metrics for comparing static class structures are defined and discussed. A Graph representation of UML class diagrams and corresponding similarity measures for UML class diagrams are defined. A full search graph matching algorithm for measuring structural similarity diagrams based on the identification of the Maximum Common Sub-graph (MCS) is presented. Finally, a simple evaluation of the approach is presented and discussed.