2 resultados para Gold mines and mining.

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 3D model of melt pool created by a moving arc type heat sources has been developed. The model solves the equations of turbulent fluid flow, heat transfer and electromagnetic field to demonstrate the flow behaviour phase-change in the pool. The coupled effects of buoyancy, capillary (Marangoni) and electromagnetic (Lorentz) forces are included within an unstructured finite volume mesh environment. The movement of the welding arc along the workpiece is accomplished via a moving co-ordinator system. Additionally a method enabling movement of the weld pool surface by fluid convection is presented whereby the mesh in the liquid region is allowed to move through a free surface. The surface grid lines move to restore equilibrium at the end of each computational time step and interior grid points then adjust following the solution of a Laplace equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of finding the heat distribution and the shape of the liquid fraction during laser welding of a thick steel plate using the finite volume CFD package PHYSICA. Since the shape of the keyhole is not known in advance, the following two-step approach to handling this problem has been employed. In the first stage, we determine the geometry of the keyhole for the steady-state case and form an appropriate mesh that includes both the workpiece and the keyhole. In the second stage, we impose the boundary conditions by assigning temperature to the walls of the keyhole and find the heat distribution and the shape of the liquid fraction for a given welding speed and material properties. We construct a fairly accurate approximation of the keyhole as a sequence of include sliced cones. A formula for finding the initial radius of the keyhole is derived by determining the radius of the vaporisation isotherm for the line heat source. We report on the results of a series of computational experiments for various heat input values and welding velocities.