5 resultados para Genotype x environment interaction
em Greenwich Academic Literature Archive - UK
Resumo:
This chapter discusses the code parallelization environment, where a number of tools that address the main tasks, such as code parallelization, debugging, and optimization are available. The parallelization tools include ParaWise and CAPO, which enable the near automatic parallelization of real world scientific application codes for shared and distributed memory-based parallel systems. The chapter discusses the use of ParaWise and CAPO to transform the original serial code into an equivalent parallel code that contains appropriate OpenMP directives. Additionally, as user involvement can introduce errors, a relative debugging tool (P2d2) is also available and can be used to perform near automatic relative debugging of an OpenMP program that has been parallelized either using the tools or manually. In order for these tools to be effective in parallelizing a range of applications, a high quality fully inter-procedural dependence analysis, as well as user interaction is vital to the generation of efficient parallel code and in the optimization of the backtracking and speculation process used in relative debugging. Results of parallelized NASA codes are discussed and show the benefits of using the environment.
Resumo:
Code parallelization using OpenMP for shared memory systems is relatively easier than using message passing for distributed memory systems. Despite this, it is still a challenge to use OpenMP to parallelize application codes in a way that yields effective scalable performance when executed on a shared memory parallel system. We describe an environment that will assist the programmer in the various tasks of code parallelization and this is achieved in a greatly reduced time frame and level of skill required. The parallelization environment includes a number of tools that address the main tasks of parallelism detection, OpenMP source code generation, debugging and optimization. These tools include a high quality, fully interprocedural dependence analysis with user interaction capabilities to facilitate the generation of efficient parallel code, an automatic relative debugging tool to identify erroneous user decisions in that interaction and also performance profiling to identify bottlenecks. Finally, experiences of parallelizing some NASA application codes are presented to illustrate some of the benefits of using the evolving environment.
Resumo:
The parallelization of real-world compute intensive Fortran application codes is generally not a trivial task. If the time to complete the parallelization is to be significantly reduced then an environment is needed that will assist the programmer in the various tasks of code parallelization. In this paper the authors present a code parallelization environment where a number of tools that address the main tasks such as code parallelization, debugging and optimization are available. The ParaWise and CAPO parallelization tools are discussed which enable the near automatic parallelization of real-world scientific application codes for shared and distributed memory-based parallel systems. As user involvement in the parallelization process can introduce errors, a relative debugging tool (P2d2) is also available and can be used to perform nearly automatic relative debugging of a program that has been parallelized using the tools. A high quality interprocedural dependence analysis as well as user-tool interaction are also highlighted and are vital to the generation of efficient parallel code and in the optimization of the backtracking and speculation process used in relative debugging. Results of benchmark and real-world application codes parallelized are presented and show the benefits of using the environment
Resumo:
The ability of zinc oxide-based dental cements (zinc phosphate and zinc polycarboxylate) to take up fluoride from aqueous solution has been studied. Only zinc phosphate cement was found to take up any measurable fluoride after 5 h exposure to the solutions. The zinc oxide filler of the zinc phosphate also failed to take up fluoride from solution. The key interaction for this uptake was thus shown to involve the phosphate groups of the set cement. However, whether this took the form of phosphate/fluoride exchange, or the formation of oxyfluoro-phosphate groups was not clear. Fluoride uptake followed radicaltime kinetics for about 2 h in some cases, but was generally better modelled by the Elovich equation, dq(t)/dt = alpha exp(-beta q(t)). Values for alpha varied from 3.80 to 2.48 x 10(4), and for beta from 7.19 x 10(-3) to 0.1946, though only beta showed any sort of trend, becoming smaller with increasing fluoride concentration. Fluoride was released from the zinc phosphate cements in processes that were diffusion based up to M(t)/M(infinity) of about 0.4. No further release occurred when specimens were placed in fresh volumes of deionised water. Only a fraction of the fluoride taken up was re-released, demonstrating that most of the fluoride taken up becomes irreversibly bound within the cement.
Resumo:
In Higher Education web-based course support systems are essential for supporting flexible learning environments. They provide tools to enable the interaction between student and tutor to reinforce transfer of theory to understanding particularly in an academic environment, therefore this paper will examine issues associated with the use of curriculum and learning resources within Web-based course support systems and the effectiveness of the resulting flexible learning environments This paper is a general discussion about flexible learning and in this case how it was applied to one of the courses at undergraduate level one. The first section will introduce what is flexible learning and the importance of flexible learning in Higher Education followed by the description of the course and why the flexible learning concepts is important in such a course and finally, how the flexibility was useful for this particular instance.