5 resultados para Generalized entropy

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The powerful general Pacala-Hassell host-parasitoid model for a patchy environment, which allows host density–dependent heterogeneity (HDD) to be distinguished from between-patch, host density–independent heterogeneity (HDI), is reformulated within the class of the generalized linear model (GLM) family. This improves accessibility through the provision of general software within well–known statistical systems, and allows a rich variety of models to be formulated. Covariates such as age class, host density and abiotic factors may be included easily. For the case where there is no HDI, the formulation is a simple GLM. When there is HDI in addition to HDD, the formulation is a hierarchical generalized linear model. Two forms of HDI model are considered, both with between-patch variability: one has binomial variation within patches and one has extra-binomial, overdispersed variation within patches. Examples are given demonstrating parameter estimation with standard errors, and hypothesis testing. For one example given, the extra-binomial component of the HDI heterogeneity in parasitism is itself shown to be strongly density dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A class of generalized Lévy Laplacians which contain as a special case the ordinary Lévy Laplacian are considered. Topics such as limit average of the second order functional derivative with respect to a certain equally dense (uniformly bounded) orthonormal base, the relations with Kuo’s Fourier transform and other infinite dimensional Laplacians are studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In attempts to conserve the species diversity of trees in tropical forests, monitoring of diversity in inventories is essential. For effective monitoring it is crucial to be able to make meaningful comparisons between different regions, or comparisons of the diversity of a region at different times. Many species diversity measures have been defined, including the well-known abundance and entropy measures. All such measures share a number of problems in their effective practical use. However, probably the most problematic is that they cannot be used to meaningfully assess changes, since thay are only concerned with the number of species or the proportions of the population/sample which they constitute. A natural (though simplistic) model of a species frequency distribution is the multinomial distribution. It is shown that the likelihood analysis of samples from such a distribution are closely related to a number of entropy-type measures of diversity. Hence a comparison of the species distribution on two plots, using the multinomial model and likelihood methods, leads to generalised cross-entropy as the LRT test statistic of the null that the species distributions are the same. Data from 30 contiguous plots in a forest in Sumatra are analysed using these methods. Significance tests between all pairs of plots yield extremely low p-values, indicating strongly that it ought to been "Obvious" that the observed species distributions are different on different plots. In terms of how different the plots are, and how these differences vary over the whole study site, a display of the degrees of freedom of the test, (equivalent to the number of shared species) seems to be the most revealing indicator, as well as the simplest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generalized Markov Brnching Process (GMBP) is a Markov branching model where the infinitesimal branching rates are modified with an interaction index. It is proved that there always exists only one GMBP. An associated differential-integral equation is derived. The extinction probalility and the mean and conditional mean extinction times are obtained. Ergodicity and stability of GMBP with resurrection are also considered. Easy checking criteria are established for ordinary and strong ergodicty. The equilibrium distribution is given in an elegant closed form. The probability meaning of our results is clear and thus explained.