2 resultados para General interest
em Greenwich Academic Literature Archive - UK
Resumo:
Belief revision is a well-research topic within AI. We argue that the new model of distributed belief revision as discussed here is suitable for general modelling of judicial decision making, along with extant approach as known from jury research. The new approach to belief revision is of general interest, whenever attitudes to information are to be simulated within a multi-agent environment with agents holding local beliefs yet by interaction with, and influencing, other agents who are deliberating collectively. In the approach proposed, it's the entire group of agents, not an external supervisor, who integrate the different opinions. This is achieved through an election mechanism, The principle of "priority to the incoming information" as known from AI models of belief revision are problematic, when applied to factfinding by a jury. The present approach incorporates a computable model for local belief revision, such that a principle of recoverability is adopted. By this principle, any previously held belief must belong to the current cognitive state if consistent with it. For the purposes of jury simulation such a model calls for refinement. Yet we claim, it constitutes a valid basis for an open system where other AI functionalities (or outer stiumuli) could attempt to handle other aspects of the deliberation which are more specifi to legal narrative, to argumentation in court, and then to the debate among the jurors.
Resumo:
Belief revision is a well-researched topic within Artificial Intelligence (AI). We argue that the new model of belief revision as discussed here is suitable for general modelling of judicial decision making, along with the extant approach as known from jury research. The new approach to belief revision is of general interest, whenever attitudes to information are to be simulated within a multi-agent environment with agents holding local beliefs yet by interacting with, and influencing, other agents who are deliberating collectively. The principle of 'priority to the incoming information', as known from AI models of belief revision, is problematic when applied to factfinding by a jury. The present approach incorporates a computable model for local belief revision, such that a principle of recoverability is adopted. By this principle, any previously held belief must belong to the current cognitive state if consistent with it. For the purposes of jury simulation such a model calls for refinement. Yet, we claim, it constitutes a valid basis for an open system where other AI functionalities (or outer stimuli) could attempt to handle other aspects of the deliberation which are more specific to legal narratives, to argumentation in court, and then to the debate among the jurors.