1 resultado para Gene expression analysis
em Greenwich Academic Literature Archive - UK
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (2)
- Aberystwyth University Repository - Reino Unido (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- ARCA - Repositório Institucional da FIOCRUZ (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (36)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (21)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (26)
- Boston University Digital Common (1)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (18)
- CentAUR: Central Archive University of Reading - UK (50)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (77)
- Cochin University of Science & Technology (CUSAT), India (26)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (3)
- Digital Archives@Colby (3)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (5)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- DigitalCommons@The Texas Medical Center (16)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (9)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (7)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (14)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (39)
- Infoteca EMBRAPA (1)
- Institutional Repository of Leibniz University Hannover (2)
- Instituto Gulbenkian de Ciência (2)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (60)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (7)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (118)
- Queensland University of Technology - ePrints Archive (73)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (136)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (5)
- School of Medicine, Washington University, United States (11)
- Universidad Politécnica de Madrid (5)
- Universidade Complutense de Madrid (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (9)
- Université de Montréal, Canada (6)
- University of Connecticut - USA (1)
- University of Queensland eSpace - Australia (32)
- University of Washington (2)
Resumo:
Serial Analysis of Gene Expression (SAGE) is a relatively new method for monitoring gene expression levels and is expected to contribute significantly to the progress in cancer treatment by enabling a precise and early diagnosis. A promising application of SAGE gene expression data is classification of tumors. In this paper, we build three event models (the multivariate Bernoulli model, the multinomial model and the normalized multinomial model) for SAGE data classification. Both binary classification and multicategory classification are investigated. Experiments on two SAGE datasets show that the multivariate Bernoulli model performs well with small feature sizes, but the multinomial performs better at large feature sizes, while the normalized multinomial performs well with medium feature sizes. The multinomial achieves the highest overall accuracy.