5 resultados para Garment cutting.
em Greenwich Academic Literature Archive - UK
Resumo:
Temperature distributions involved in some metal-cutting or surface-milling processes may be obtained by solving a non-linear inverse problem. A two-level concept on parallelism is introduced to compute such temperature distribution. The primary level is based on a problem-partitioning concept driven by the nature and properties of the non-linear inverse problem. Such partitioning results to a coarse-grained parallel algorithm. A simplified 2-D metal-cutting process is used as an example to illustrate the concept. A secondary level exploitation of further parallel properties based on the concept of domain-data parallelism is explained and implemented using MPI. Some experiments were performed on a network of loosely coupled machines consist of SUN Sparc Classic workstations and a network of tightly coupled processors, namely the Origin 2000.
Resumo:
This paper compares three alternative numerical algorithms applied to a nonlinear metal cutting problem. One algorithm is based on an explicit method and the other two are implicit. Domain decomposition (DD) is used to break the original domain into subdomains, each containing a properly connected, well-formulated and continuous subproblem. The serial version of the explicit algorithm is implemented in FORTRAN and its parallel version uses MPI (Message Passing Interface) calls. One implicit algorithm is implemented by coupling the state-of-the-art PETSc (Portable, Extensible Toolkit for Scientific Computation) software with in-house software in order to solve the subproblems. The second implicit algorithm is implemented completely within PETSc. PETSc uses MPI as the underlying communication library. Finally, a 2D example is used to test the algorithms and various comparisons are made.
Resumo:
Graph partitioning divides a graph into several pieces by cutting edges. Very effective heuristic partitioning algorithms have been developed which run in real-time, but it is unknown how good the partitions are since the problem is, in general, NP-complete. This paper reports an evolutionary search algorithm for finding benchmark partitions. Distinctive features are the transmission and modification of whole subdomains (the partitioned units) that act as genes, and the use of a multilevel heuristic algorithm to effect the crossover and mutations. Its effectiveness is demonstrated by improvements on previously established benchmarks.
Resumo:
This paper describes progress on a project to utilise case based reasoning methods in the design and manufacture of furniture products. The novel feature of this research is that cases are represented as structures in a relational database of products, components and materials. The paper proposes a method for extending the usual "weighted sum" over attribute similarities for a ·single table to encompass relational structures over several tables. The capabilities of the system are discussed, particularly with respect to differing user objectives, such as cost estimation, CAD, cutting scheme re-use, and initial design. It is shown that specification of a target case as a relational structure combined with suitable weights can fulfil several user functions. However, it is also shown that some user functions cannot satisfactorily be specified via a single target case. For these functions it is proposed to allow the specification of a set of target cases. A derived similarity measure between individuals and sets of cases is proposed.
Resumo:
This paper, a 2-D non-linear electric arc-welding problem is considered. It is assumed that the moving arc generates an unknown quantity of energy which makes the problem an inverse problem with an unknown source. Robust algorithms to solve such problems e#ciently, and in certain circumstances in real-time, are of great technological and industrial interest. There are other types of inverse problems which involve inverse determination of heat conductivity or material properties [CDJ63][TE98], inverse problems in material cutting [ILPP98], and retrieval of parameters containing discontinuities [IK90]. As in the metal cutting problem, the temperature of a very hot surface is required and it relies on the use of thermocouples. Here, the solution scheme requires temperature measurements lied in the neighbourhood of the weld line in order to retrieve the unknown heat source. The size of this neighbourhood is not considered in this paper, but rather a domain decomposition concept is presented and an examination of the accuracy of the retrieved source are presented. This paper is organised as follows. The inverse problem is formulated and a method for the source retrieval is presented in the second section. The source retrieval method is based on an extension of the 1-D source retrieval method as proposed in [ILP].