2 resultados para GLYCOGEN-SYNTHASE-KINASE-3-BETA
em Greenwich Academic Literature Archive - UK
Resumo:
Evaluation of the cytotoxicity of an ethanolic root extract of Sideroxylonfoetidissimum subsp. gaumeri (Sapotaceae) revealed activity against the murine macrophage-like cell line RAW 264.7. Systematic bioassay-guided fractionation of this extract gave an active saponin-containing fraction from which four saponins were isolated. Use of 1D ((1)H, (13)C, DEPT135) and 2D (COSY, TOCSY, HSQC, and HMBC) NMR, mass spectrometry and sugar analysis gave their structures as 3-O-(beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl)-28-O-(alpha-L-rhamnopyranosyl-(1-->3)[beta-D-xylopyranosyl-(1-->4)]-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)-16alpha-hydroxyprotobassic acid, 3-O-beta-D-glucopyranosyl-28-O-(alpha-L-rhamnopyranosyl-(1-->3)[beta-D-xylopyranosyl-(1-->4)]-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)-16alpha-hydroxyprotobassic acid, 3-O-(beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl)-28-O-(alpha-L-rhamnopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)[beta-D-apiofuranosyl-(1-->3)]-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)-16alpha-hydroxyprotobassic acid, and the known compound, 3-O-beta-D-glucopyranosyl-28-O-(alpha-L-rhamnopyranosyl-(1-->3)[beta-D-xylopyranosyl-(1-->4)]-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)-protobassic acid. Two further saponins were obtained from the same fraction, but as a 5:4 mixture comprising 3-O-(beta-D-glucopyranosyl)-28-O-(alpha-L-rhamnopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)[beta-D-apiofuranosyl-(1-->3)]-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)-16alpha-hydroxyprotobassic acid and 3-O-(beta-D-apiofuranosyl-(1-->3)-beta-D-glucopyranosyl)-28-O-(alpha-L-rhamnopyranosyl-(1-->3)[beta-D-xylopyranosyl-(1-->4)]-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)-16alpha-hydroxyprotobassic acid, respectively. This showed greater cytotoxicity (IC(50)=11.9+/-1.5 microg/ml) towards RAW 264.7 cells than the original extract (IC(50)=39.5+/-4.1 microg/ml), and the saponin-containing fraction derived from it (IC(50)=33.7+/-6.2 microg/ml).
Resumo:
The solid-state structures of a series of seven substituted 3-methylidene-1H-indol-2(3H)-one derivatives have been determined by single-crystal X-ray diffraction and are compared in detail. Six of the structures {(3Z)-3-(1H-pyrrol-2- ylmethylidene)-1H-indol-2(3H)-one, C13H10N2O, (2a); (3Z)-3-( 2-thienylmethylidene)-1H-indol-2(3H)-one, C13H9NOS, (2b); (3E)-3-(2-furylmethylidene)-1H-indol-2(3H)-one monohydrate, C13H9NO2 center dot H2O, (3a); 3-(1-methylethylidene)-1H-indol- 2(3H)-one, C11H11NO, (4a); 3-cyclohexylidene-1H-indol- 2(3H)-one, C14H15NO, (4c); and spiro[1,3-dioxane-2,3'-indolin]- 2'-one, C11H11NO3, (5)} display, as expected, intermolecular hydrogen bonding (N-H center dot center dot center dot O=C) between the 1H-indol-2(3H)-one units. However, methyl 3-(1-methylethylidene)- 2-oxo-2,3-dihydro-1H-indole-1-carboxylate, C13H13NO3, (4b), a carbamate analogue of (4a) lacking an N-H bond, displays no intermolecular hydrogen bonding. The structure of (4a) contains three molecules in the asymmetric unit, while (4b) and (4c) both contain two independent molecules.