6 resultados para Frequency meters
em Greenwich Academic Literature Archive - UK
Resumo:
The use of variable frequency microwave technology in curing of polymer materials used in microelectronics applications is discussed. A revolutionary open-ended microwave curing system is outlined and assessed using experimental and numerical approaches. Experimental and numerical results are presented, demonstrating the feasibility of the system
Resumo:
Curing of encapsulant material in a simplified microelectronics package using an open oven Variable Frequency Microwave (VFM) system is numerically simulated using a coupled solver approach. A numerical framework capable of simulating electromagnetic field distribution within the oven system, plus heat transfer, cure rate, degree of cure and thermally induced stresses within the encapsulant material is presented. The discrete physical processes have been integrated into a fully coupled solution, enabling usefully accurate results to be generated. Numerical results showing the heating and curing of the encapsulant material have been obtained and are presented in this contribution. The requirement to capture inter-process coupling and the variation in dielectric and thermophysical material properties is discussed and illustrated with simulation results.
Resumo:
Dual-section variable frequency microwave systems enable rapid, controllable heating of materials within an individual surface mount component in a chip-on=board assembly. The ability to process devices individually allows components with disparate processing requirements to be mounted on the same assembly. The temperature profile induced by the microwave system can be specifically tailored to the needs of the component, allowing optimisation and degree of cure whilst minimising thermomechanical stresses. This paper presents a review of dual-section microwave technology and its application to curing of thermosetting polymer materials in microelectronics applications. Curing processes using both conventional and microwave technologies are assessed and compared. Results indicate that dual-section microwave systems are able to cure individual surface mount packages in a significantly shorter time, at the expense of an increase in thermomechanical stresses and a greater variation in degree of cure.
Resumo:
Orthogonal frequency division multiplexing (OFDM) systems are more sensitive to carrier frequency offset (CFO) compared to the conventional single carrier systems. CFO destroys the orthogonality among subcarriers, resulting in inter-carrier interference (ICI) and degrading system performance. To mitigate the effect of the CFO, it has to be estimated and compensated before the demodulation. The CFO can be divided into an integer part and a fractional part. In this paper, we investigate a maximum-likelihood estimator (MLE) for estimating the integer part of the CFO in OFDM systems, which requires only one OFDM block as the pilot symbols. To reduce the computational complexity of the MLE and improve the bandwidth efficiency, a suboptimum estimator (Sub MLE) is studied. Based on the hypothesis testing method, a threshold Sub MLE (T-Sub MLE) is proposed to further reduce the computational complexity. The performance analysis of the proposed T-Sub MLE is obtained and the analytical results match the simulation results well. Numerical results show that the proposed estimators are effective and reliable in both additive white Gaussian noise (AWGN) and frequency-selective fading channels in OFDM systems.
Resumo:
Variable Frequency Microwave (VFM) processing of heterogeneous chip-on-board assemblies is assessed using a multiphysics modelling approach. The Frequency Agile Microwave Oven Bonding System (FAMOBS) is capable of rapidly processing individual packages on a Chip-On-Board (COB) assembly. This enables each package to be processed in an optimal manner, with temperature ramp rate, maximum temperature and process duration tailored to the specific package, a significant benefit in assemblies containing disparate package types. Such heterogeneous assemblies may contain components such as large power modules alongside smaller modules containing low thermal budget materials with highly disparate processing requirements. The analysis of two disparate packages has been assessed numerically to determine the applicability of the dual section microwave system to curing heterogeneous devices and to determine the influence of differing processing requirements of optimal process parameters.