1 resultado para Freezing points.
em Greenwich Academic Literature Archive - UK
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (43)
- Archive of European Integration (17)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (14)
- Biodiversity Heritage Library, United States (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (39)
- Boston University Digital Common (1)
- Brock University, Canada (13)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (31)
- CentAUR: Central Archive University of Reading - UK (26)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (11)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (24)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Montana Tech (1)
- Digital Repository at Iowa State University (1)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (18)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (1)
- Indian Institute of Science - Bangalore - Índia (54)
- Instituto Politécnico de Castelo Branco - Portugal (1)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (2)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (8)
- Publishing Network for Geoscientific & Environmental Data (242)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (23)
- Queensland University of Technology - ePrints Archive (32)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (76)
- South Carolina State Documents Depository (7)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (13)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (4)
- Université de Montréal, Canada (23)
- University of Connecticut - USA (2)
- University of Michigan (154)
- University of Southampton, United Kingdom (3)
Resumo:
Given M(r; f) =maxjzj=r (jf(z)j) , curves belonging to the set of points M = fz : jf(z)j = M(jzj; f)g were de�ned by Hardy to be maximum curves. Clunie asked the question as to whether the set M could also contain isolated points. This paper shows that maximum curves consist of analytic arcs and determines a necessary condition for such curves to intersect. Given two entire functions f1(z) and f2(z), if the maximum curve of f1(z) is the real axis, conditions are found so that the real axis is also a maximum curve for the product function f1(z)f2(z). By means of these results an entire function of in�nite order is constructed for which the set M has an in�nite number of isolated points. A polynomial is also constructed with an isolated point.